Gas station without pumps

2012 April 20

Make: Kit Reviews | The Ultimate Kit Guide

About a month ago, Make magazine released their reviews of various kits, Make: Kit Reviews | The Ultimate Kit Guide.  I have been a big fan of kits as a way to get kids into the habit of building things and knowing how they are put together.  They provide an intermediate point between ready-made consumer goods and hand-made artisanal goods.

I’ve talked before about my fondness for Heathkit electronics kits when I was growing up (Thanks, Dad!) and about how I was glad to see that they were finally back in the kit business. The kit issue of Make has a number of cool things in it ranging from the $3 Learn-to-Solder badge to $800 model submarines, $1000 mini CNC milling machines, $1300 3D printers, and $863 wood-fired hot tubs.  Although there are few kits in the issue that I really want, it is cool to see just how much is available in kit form these days.  Some are old-school kits (tube amplifiers! crystal radios! Nixie tubes!) and some are very modern (RFID breakout boards, quadracopters, drone planes).

My son has made a number of kits over the years (like the Velleman MK150 shaking dice kit or the K5300 Stroboscope with a xenon tube), and he is now moderately competent with soldering iron, solder sucker, diagonal cutters, and long nose pliers.  I suppose I should get him doing some surface-mount soldering, as my fine-motor control is a little shaky for 1mm × 2mm capacitors and 0.05″ pitch leads on ICs.  (Yes, I’ve seen instructions for making solder reflow ovens out of toaster ovens, and doing soldering with a skillet, but I’m not yet convinced that those are functional enough to be worth the investment in time and fried parts.)

Leads torn on pressure sensor.

The point about SMD soldering comes up this week because the pressure sensor superglued to the inside of the dry box for the underwater vehicle had its leads torn apart. This is probably my fault, since I had suggested the idea of supergluing the pressure sensor to the inside of the dry box without giving any consideration to the forces on the tiny little leads of the pressure sensor.

I had some spare sensor boards, but I had to order more pressure sensors from Digikey and assemble a new board for them.  This weekend, they’ll drill yet another hole in the drybox and glue the replacement pressure sensor in place, but this time there will be a couple of pieces of plastic glued to the PC board (about 4.8mm thick, to match the thickness of the pressure sensor body) also glued to the inside of the dry box, so that unplugging the cables will not put strain on the tiny wires of the pressure gauge.

The new hole will make the 6th penetration of the dry box.  Somewhat amazingly, none of these penetrations have leaked, although we have had problems with the underwater connector that they designed for the motor wires.  We’re hoping that problem will be fixed this weekend.

1 Comment »

  1. […] and the board to the reservoir, to avoid any strain on the leads. (I learned my lesson from the failure of a pressure sensor on the underwater ROV.)  I’ve ordered this board from OSH Park, since $3.65 for 3 prototype boards (including […]

    Pingback by PC board for pressure sensor « Gas station without pumps — 2012 September 3 @ 21:46 | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: