Gas station without pumps

2015 July 18

Measuring BitScope BS-10 input impedance

In Voltmeter impedance I presented a 2-voltmeter way of measuring AC voltmeter impedance, and in Measuring voltmeter input impedance I presented a way of measuring the AC voltmeter impedance with just the voltmeter itself, a function generator, and a resistor that is around the DC resistance of the meter (or a little smaller).

I got measurements of

meter Z
Radio Shack 10.87MΩ || 18.54pF
DT-830B 0.42MΩ || 31.59pF
DT-9205A 13MΩ || 22pF

I decided to apply the same techniques to the BitScope BS-10 USB oscilloscope, getting the following result:

The BitScope provides the standard oscilloscope input impedance of 1MΩ.

The BitScope provides the standard oscilloscope input impedance of 1MΩ.

The BitScope has the standard 1MΩ input impedance with a fairly small 10pF parallel capacitance (probably largely from the 20cm leads I was using). The measurements are a bit noisy, because I was using the provided peak-to-peak voltage measurement, which varies quite a bit from trace to trace.  At high frequencies the waveform is not much like a sine wave, so the results are bit dubious that far out—I did not include frequencies greater than 100kHz in the fit.

The voltage measurements look pretty good, though getting consistent measurements from BitScope’s peak-to-peak measurements with the cursor is a bit difficult:

I think that the voltage drop with no series resistor is from the limits of the FG085 function generator, not from the BitScope oscilloscope.

I think that the voltage drop with no series resistor is from the limits of the FG085 function generator, not from the BitScope oscilloscope.

I should probably average hundreds of waveforms to get a more precise and accurate measurement, but setting that up would be tedious.   I did gather 576 traces of the 200kHz waveform and averaged them together to get a 2.2334V peak-to-peak waveform that looks much more like a sine-wave than I would have expected from the individual traces:

The distortions from a sine wave are barely visible here.

The distortions from a sine wave are barely visible here.

The BitScope is capable of seeing the glitches in the waveform at lower frequencies, like 2kHz, but only barely. The nonlinearities are much better viewed with the PteroDAQ running at lower frequencies.

1 Comment »

  1. […] a series of posts (most recently Measuring BitScope BS-10 input impedance), I’ve been measuring the input impedance of my various ways of measuring AC […]

    Pingback by Measuring PteroDAQ KL25Z input impedance | Gas station without pumps — 2015 July 21 @ 09:19 | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: