Gas station without pumps

2015 December 14

Sabbatical leave application 2016

Filed under: Circuits course — gasstationwithoutpumps @ 14:33
Tags: , ,

I’ve got to write an application for sabbatical leave and submit it before 2016 March 11.   My plans are to take sabbatical leave for fall quarters at ⅔ or 5/9 pay for the next five years, to gradually drain the accumulated sabbatical leave credits, rather than spending them all at once getting two quarters off at full pay.  If I do that, I can retire after Winter 2021 with one unused sabbatical credit (which is a little left as you can get, as you have to return to the university for at least as long as the duration of your last sabbatical).

It is better for the department for me to take sabbatical at partial pay, as the savings in salary is returned to the department as Temporary Academic Staffing (TAS) funds, which can be used for hiring lecturers.  If I took salary at full pay, the department would get nothing, and if I took leave without pay, they’d get my full salary—at ⅔ salary they get  the remaining ⅓, which should be enough to hire 1.5 lecturers to replace me for that quarter (and cover the 1.4 courses that I’d not be teaching).

The sabbatical leave form is only for the Fall 2016 leave and asks a lot of questions, some of which are difficult to answer briefly.

The application form shall be accompanied by a statement providing in detail the following information:

a. A brief history of the project, from inception through progress to date and projection as to completion date. This history shall include a description of the applicant’s preparation and any significant contributions already made in the field of activity with which the project is concerned.

I’m planning to do two things in Summer and Fall 2016: work on my textbook and try to find a bioelectronics project to design, preferably in collaboration with a doctor at UCSF.  Unfortunately, I don’t know any one at UCSF who has a problem that would be interesting for me to work on, and I’m not very good at the networking needed to find such collaborators. I’m also more interested in open hardware than in proprietary development, and that could be a bad mismatch for the UC emphasis on making money off of research developments in the biomedical field.

Even if I’m vague in the request about starting a bioelectronics project, giving a brief history of the textbook development will take some thought—I can’t very well give them the 373 blog posts I’ve written about the course, as they probably want only one or two paragraphs.  I suppose I should mention the times I’ve taught the course, the evolution of the lab handouts into the current draft of the book, and the need for revision based on changing the level and pace of the course next year. The course will be moved from upper division (junior/senior) to lower division (freshman/sophomore), and split into two quarters (2 4-unit courses, replacing the current 5+2-unit course).  The move to lower division means reducing the prerequisites (I’ll still have differential calculus as a prereq, but not calculus-based physics), which in turns means beefing up the background in the text and in the class, to cover the physics that the students won’t have had.

The book may be publishable after the Fall 2016 leave, but I’ll probably want to try using it at the slower pace during Winter and Spring 2017, and revise it Summer and Fall 2017, based on that experience.  I’m still not sure when the project will be “completed”.  There are many milestones along the way: used in the course (done Spring 2015), released to the public (done in draft form starting August 2015), all the “to-do” notes in the text done (maybe never—I keep finding more that needs to be improved), adopted for teaching by someone other than me, available on paper (maybe never—the cost of printing is high relative to PDF distribution, but see Textbook should be on paper), available in EPUB and MOBI formats (maybe never—those formats are awful for math and for scientific graphics), freezing an edition and getting an ISBN, distributing through a professional publisher (maybe never—the textbook publishers take way too big a share of too high a price, providing little in return except their name).

b. Significance of the project as a contribution to knowledge, to art, to a particular profession; or as an expected contribution to the applicant’s increased effectiveness as a teacher and scholar.

I could find no intro electronics textbook that was suitable for bioengineering students at the level I wanted to teach.  Everything that had sufficient design content assumed that the students had already had at least a circuits course and often several low-level analog electronics courses. The books that assumed no prior electronics experience all ended up being “cookbooks”, which had students building things that others designed, or “physics” books, doing demos to illustrate concepts, with no design work in either case. There seems to be a real need for books that get students to design simple electronics without years of preliminary drudgery.

c. Name(s) of the location(s) or institution(s) where the project will be carried on, and the names of authorities, if any, with whom it will be conducted.

Textbook writing will happen at home.  Finding a project to collaborate on with someone else is less definite—I’ll probably try to find collaborators at UCSF, though that will not be easy to arrange, as I don’t want to move to San Francisco, but only visit for a few days at a time every couple of weeks. Stanford would be closer, but the doctors at the Stanford medical school have easy access to Stanford engineering faculty, so finding a fruitful collaboration is likely to be harder.

d. Assurances of cooperation, or authorization to conduct the project, received from individuals, institutions, or agencies.

No authorization is needed for the textbook project, and nothing has been set up yet for doing a collaboration.  It may be that I’ll spend much of the first sabbatical just finding people and setting up mechanisms for later collaborations.

e. Description of all financial support expected during the sabbatical leave, including any fellowship, grant, government-sponsored exchange lectureship, or payment for contract research. (See also APM-740-18 and 740-19.)

No external support expected. I may do small amounts of consulting (well less than the 1-day-a-week limit), if the opportunity arises.

f. Description of University service which will be provided if the applicant proposes to substitute significant University service for some or all of the teaching/instructional requirements of a sabbatical leave in residence (See APM 740-8-b & CAPM 900.700-G)

Not doing a leave in residence, but I may still do some service work at UCSC while on leave, like giving the “Speaking Loudly” workshop for Women in Science and Engineering or helping the advising office with new-student orientation.

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: