Gas station without pumps

2016 January 26

Phototransistor I-vs-V plots

Filed under: Data acquisition,freshman design seminar — gasstationwithoutpumps @ 15:47
Tags: , ,

I realized this week that I had never plotted I-vs-V curves for phototransistors, and the data sheets don’t usually include them, so I measured some today.

I put an LTR-4206 phototransistor in series with a 1kΩ resistor (so that voltage across the resistor was current in mA), and drove the pair with a slow triangle wave (3.2Vpp with 1.6V offset) from my FG085 function generator, using a 470µF capacitor in parallel with the function generator to smooth out the steps.

I illuminated the phototransistor with a narrow-beam 591nm LED (33-2UYC/H3/S400-A6) from about 0.5″ away.  The LED has a 68Ω current-limiting resistor to 3.3V, resulting in an IR voltage drop of 1.248V, for about 18.35mA.

I recorded the voltage across the 1kΩ resistor and across the resistor plus phototransistor using PteroDAQ on a TeensyLC.

I interposed a Brand 1.5ml cuvette full of water or a piece of white paper to get different light levels:

On the log current plot, one can see that it is important to have sufficient collector-emitter voltage to get into the saturation region of the curve—we need about 0.5V. I'd need to add a dark box for a colorimeter, as the ambient light in a dimly lit room is about 0.5% of the light through the cuvette, and would throw the measurements off.

On the log current plot, one can see that it is important to have sufficient collector-emitter voltage to get into the saturation region of the curve—we need about 0.5V.
I’d need to add a dark box for a colorimeter, as the ambient light in a dimly lit room is about 0.5% of the light through the cuvette, and would throw the measurements off.

On the linear plot of current, one can see that the saturation current is not really constant, but increases with voltage. A simple resistor to convert current to voltage would result in non-linear response, as the collector-emitter voltage would not be constant.

On the linear plot of current, one can see that the saturation current is not really constant, but increases with voltage. A simple resistor to convert current to voltage would result in non-linear response, as the collector-emitter voltage would not be constant.

Making a colorimeter with a phototransistor to get good linearity probably requires a transimpedance amplifier, rather than a simple resistor, but it looks like a 2.5mA current range for the amplifier would be adequate. With a 3.3V supply, the VCE could be set to 0.7V and the gain to 1kΩ, with the output in the range 0.7V–3.2V.

Interposing a piece of paper in the light path is good for aligning the LED and the phototransistor, as the beam pattern becomes quite clear. One of the biggest challenges in making a homemade colorimeter is ensuring that the LED and phototransistor don’t get jostled as the cuvettes are added or removed.

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: