Gas station without pumps

2016 December 19

Impedance of inductors and parasitic impedance of oscilloscope

Filed under: Data acquisition — gasstationwithoutpumps @ 01:04
Tags: , , , ,

Because the Analog Discovery 2 makes doing impedance spectroscopy so easy, I decided to do a quick check of my inductors to plot their impedance, checking the series resistance in the process.  This was just going to be a short interruption to my day of working on my book, but it ended up taking up most of the day, because I got interested in seeing whether I could determine the characteristics of the scope inputs that were limiting the performance at higher frequencies.

Here was the data I started with, after converting the dB scale to |Z|. I used a 20Ω resistor in order to get reasonably large voltages at both ends of the frequency sweep. With a larger resistor, the low-frequency measurement across the inductor was too noisy, because the voltages were so small.

Here was the data I started with, after converting the dB scale to |Z|. I used a 20Ω resistor in order to get reasonably large voltages at both ends of the frequency sweep. With a larger resistor, the low-frequency measurement across the inductor was too noisy, because the voltages were so small.

The data looks fine up to 1MHz, but above that is a resonant peak, probably from the capacitance of the oscilloscope and the wiring to it.

I tried modeling the oscilloscope inputs as capacitors, but that resulted in way too sharp a spike at the resonance to match the data, so I tried a resistor in series with a capacitor. Initially, I tried modeling both channels identically, but I got better fits when I used a different model for each channel:

The resistor in series with the capacitance of the scope limits the sharpness of the resonance peak. Channel 1 was measuring the voltage across the 20Ω resistor, and Channel 2 was measuring the voltage across the inductor, so the setup is more sensitive to the Channel 2 parameters than to the Channel 1 parameters. I don’t really believe that the Channel 1 parameters fit here are correct.

It might be interesting to swap which channel is connected to which device, and see whether the R+C models still fit well, but I’ve not got the time for that tonight.   I did have some earlier data (from playing with resistor sizes) and I fit the oscilloscope models to it:

The fits here suggest some  difference between the channels, but not as radical a difference as the previous plot.  The 62kΩ sense resistor, though not good for determining the DC resistance of the inductor, does give a good handle on the parasitic impedance of the oscilloscope channels.

The fits here suggest some difference between the channels, but not as radical a difference as the previous plot. The 62kΩ sense resistor, though not good for determining the DC resistance of the inductor, does give a good handle on the parasitic impedance of the oscilloscope channels.

Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: