Gas station without pumps

2017 July 13

Analog Discovery 2 oscilloscope input impedance

Filed under: Circuits course,Data acquisition — gasstationwithoutpumps @ 11:43
Tags: ,

I have been blindly trusting the documentation for the Analog Discovery 2 that claims that the input impedance of the differential oscilloscope channels is 1MΩ || 24pF.  Yesterday, when my son was measuring the input impedance of the reference inputs of a sigma-delta ADC, we had reason for a while to doubt that claim, so I measured the input impedance in a simple way:  I put a 2MΩ 1% resistor in series with one input channel and used the other input channel to measure the voltage across the series pair. I swept the network analyzer from 10Hz to 1MHz, and recorded the voltage gain (and the phase).  The voltage gain is not well-fit by a simple (1MΩ || 24 pF) model, as the impedance does not keep decreasing.  It seems to be well modeled by a model with Rs+(Cp||Rp), though.

The reported voltage gain for Channel 2/Channel 1 is well fit by a voltage divider.

Because the Analog Discovery 2 reports gain for Channel 2/Channel 1, I had to invert the data to get it in the form I wanted for my model (I could, alternatively, have swapped the legs of the voltage divider in the model).

The phases were also well fit by the models, though I did not use the phase information in the fitting. (I tried refitting using just the phase information, but that did not change the parameters by much, nor did it visibly improve the fit of the measured phases, so I left the parameters with just the amplitude fit.)

The DC impedances are both 1.044MΩ, very close to the specified value, but the capacitor is over twice the specified value, and not directly in parallel with the resistance.  The reference resistor I used is supposed to be a 2MΩ±1% resistor, but it was part of a cheap assortment, and we’ve found these cheap assortments to often be slightly out of spec, so I’d not trust it to be better than ±2%.

The 200kΩ/800kΩ split is not very surprising, when we look at the circuit for the input divider of the oscilloscope (from the hardware reference manual):

There is a natural, internal split into an 820kΩ and 220kΩ resistance in the input voltage divider (component numbers here are for channel 1, but channel 2 is identically designed).

The appearance of the 200kΩ/800kΩ split in the model for the input impedance suggests that the trimmer capacitor C8 is not properly adjusted.  If all capacitance and resistance values were nominal, then C8 should be set to 39.59pF, to provide a flat response from the voltage divider (at the high-gain setting), producing an input impedance of (1.04MΩ || 26pF).  But C8 only has a 5–20pF range, so perhaps there are some other, parasitic capacitances that change the desired trimming.

I cannot fit a model based on the input divider circuit to the data—I keep getting a negative capacitance for C9 or C8, so that they can cancel each other.  These models also make C1 around 50pF.

So I can reconcile the DC behavior (1.044MΩ is well within the ±2% measurement error of the nominal 1.04MΩ), but not the AC behavior of the scope inputs.

I must be missing something, but what?  Any useful suggestions (which don’t involve modifying the Analog Discovery 2) are welcome.

1 Comment »

  1. […] morning in Analog Discovery 2 oscilloscope input impedance, I […]

    Pingback by Analog Discovery 2 oscilloscope input impedance fixed | Gas station without pumps — 2017 July 13 @ 23:25 | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: