Gas station without pumps

2017 August 26

Review of cheap buck regulators

Filed under: Robotics,Uncategorized — gasstationwithoutpumps @ 14:15
Tags: , , ,

I recently bought some very cheap buck regulators from Ali Express:

https://www.aliexpress.com/item/MP1584EN-ultra-small-DC-DC-3A-power-step-down-adjustable-module-Buck-Converter-24V-turn-12v/32382698190.html

At only 44¢ each with claimed specs

Input voltage: 4.5V-28V
Output voltage: 0.8V-20V
Output Current: 3A (maximum)
Conversion efficiency: 96% (maximum)
Output ripple: <30mV
Switching Frequency: 1.4MHz (highest), typical 1MHz
Operating temperature: -45 to +85 degrees Celsius
Dimensions: 22mm * 17mm * 4mm

they seemed too good to pass up.  The data sheet for the MP 1584EN chip seemed to justify the claims, so I bought three of them to try out.

I’ve done a little testing with a 12V input and the output set to 6.08V, and they seem not to work as specified:
DC RMS voltage [V] DC RMS current [mA] Peak-to-peak ripple [mV] ripple freq [kHz]
6.091  0 15.09 6.29
6.098  1.9  69.1  34.0
6.084  16  70.1 65
6.077  194  75.8  930.4
6.072  376  104 929.1
6.072  568  122.8  929.7
6.163 1309 2266 168.1
6.084  2131  1576  230.3

The regulation to an average voltage is fine, but the ripple is enormous! Adding a capacitor (470µF aluminum polymer) helps at higher currents, but not much, and hurts at the 0.3–0.6A level:

DC RMS voltage [V] DC RMS current [mA] Peak-to-peak ripple [mV] ripple freq [kHz]
6.090  0  7 0.0396
6.090  1.9  28.2  35.5
6.090  15.8  18.4  3.6
6.077  194  75.5  930.3
6.078  375  310.3  465.2
6.083  568  630.6  465.8
6.091  1246  910  464.9
6.088  2112  1028  461.4
A 1µF ceramic (instead of a 470µF electrolytic) actually helps more at the higher currents, possibly because the electrolytic capacitor is too slow to respond (large equivalent series resistance and lead inductance).
DC RMS voltage [V] DC RMS current [mA] Peak-to-peak ripple [mV] ripple freq [kHz]
6.090  0  11.4 7.8
6.090 2.2  59  30.7
6.090  16.7  62  62
6.077  194  82  930.3
6.077  376  123  929.3
6.071  577  137  929.6
6.075  1297  189  928.0
6.088  2155  636  305.4

Still the regulator is way out of spec for ripple pretty much across the board.

The only explanation I’ve come up with for this way-out-of-spec behavior is that the manufacturers may have used a very cheap inductor which saturates at a much lower current than the 3A this regulator is supposed to provide.  A 150mA 10µH inductor costs about 3¢, while a 3.2A one costs about 17¢ (in 1000s)—on a 44¢ device, that’s a big difference in cost!  (In single-unit quantities, the price is more like 50¢ each for a beefy enough inductor.)

The inductor is not labeled, so determining what it is would require removing it from the board and soldering on some test leads.  That might be worth doing, especially if I could find a decent inductor of the same size (both physically and in terms of inductance) to replace it with.  If a 50¢ part fixes the boards, they might still be worthwhile, as adequately beefy DC-DC converters from reputable companies cost $10 or more, and designing and building my own board would cost a lot more than just replacing the inductor.

Advertisements

2 Comments »

  1. […] couple of days ago, I wrote about the cheap buck regulators I bought, and expressed some confusion about how poorly they were working.  I’ve spent a couple of […]

    Pingback by More on cheap buck regulators | Gas station without pumps — 2017 August 28 @ 18:40 | Reply

  2. […] to use one or two switching regulators to bring the battery voltage down to 6~V for the motors (see Review of cheap buck regulators, More on cheap buck regulators, and Correcting reasoning on buck regulators). These and the Polulu […]

    Pingback by Half-scale mockup of chassis | Gas station without pumps — 2017 November 8 @ 15:38 | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: