Gas station without pumps

2017 November 13

Large inductor revisited

Filed under: Robotics — gasstationwithoutpumps @ 16:03
Tags: , ,

I had the idea today that I could make an even simpler track wire detector if I used a larger inductor to get more signal before amplification.  I only have one inductor larger than the 10mH inductor provided in the mechatronics course, so I decided to try it, though it is much too large and heavy for use on the robot—I wanted to see whether I would get an improvement by using a large inductor, before I bought one and waited for it.

The first thing to do was figure out how big an inductance it has.  I had done a few measurements of it over four years ago, but I was not very satisfied with the results then, so I measured it again today using a 0.1% 1kΩ reference resistor and the impedance meter of the Analog Discovery 2 (with short and open compensation).  I got values consistent with previous measurements:

The inductance is not fixed with frequency, but is around 370mH.

I paired the inductor with a 68pF capacitor to make a resonant tank:

The best-fit curve does not match the parameters measured separately for the inductor and capacitor.
I also have no idea what the spike around 29kHz is.

I tried detecting the track wire with this tank, rather than the 10mH||43nF that I’d used before, and I got larger signals, at least 3 times larger, but not 10–100 times larger as I had hoped.  Still, it might we worth buying some 100mH inductors to get a stronger initial signal than with the 10mH inductors that I have.  (The 370mH inductor is way too heavy for the robot.)

I’ll still need some amplification before the peak detector, and I probably will want to mount the detector so that it deploys outside the initial bounding box of the robot—perhaps on a ramp that lets the balls roll down into the target.  As far as I can tell from eye-balling it, though, a ramp would only work if the ball storage goes all the way to the top of the 11″ cube that contains the robot, but then I don’t see how I can hit the higher target.

So I think I’ll have to put the AT-M6 firing lower down, at the 3.5″ bumper level, and shoot upwards a little bit, which probably means an accelerator wheel.  I have some little motors that I could probably run at 6V for the wheel.  I’d probably want to put a FET in series so that I could keep the motor off most of the time, and just spin it up before firing (I think that the motors are intended to be 3V motors, and running them continuously at 6V would kill them).

I’ve gotten a lot less done on the mechatronics project today than I’d hoped—I thought I already had some bigger inductors that I could use to build the complete trackwire detector, but it seems like I’ll have to order them.  I need to order some bumper switches anyway.  I’m thinking of Omron VX-016-1C23 roller switches ($4.50 from Digikey) or Honeywell V7-2S17D8-201 ($2.95 from Jameco).  Neither one is the cheapest roller switch from either distributor, but they seem to be the cheapest ones with gold contacts for low-current switching.  Omron warns that their regular switches may be unreliable for “microloads”, and they only spec them for 160mA or more at 5V, while the low-current switches are rated down to 1mA.  Since intermittent failures are really hard to debug, I’ll go with the switches designed for low currents.

I’ll probably end up spending extra for the switches from Digikey, not because they are better, nor even that their data sheet is better (though it is), but because Digikey has cheap 100mH inductors and Jameco doesn’t seem to.

Since my electronics work for today wasted a lot of time without any tangible result, and I’ve had no new insights on how to do the mechanical design, I’d better switch to doing some programming—I still need to port the ES framework to the Teensyduino environment!

1 Comment »

  1. […] Large inductor revisited, I suggested that using a 100mH inductor should produce larger signals than a 10mH inductor, based […]

    Pingback by Track wire sensor | Gas station without pumps — 2017 November 19 @ 22:26 | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: