Gas station without pumps

2018 July 9

Analog Discovery breadboard adapter

Filed under: Circuits course,Data acquisition — gasstationwithoutpumps @ 11:16
Tags: , ,

As I mentioned in Analog Discovery Impedance Analyzer, I recently bought two new attachments for my Analog Discovery 2.  I reviewed the Impedance Analyzer in the earlier post, so in this one I’ll review the breadboard breakout.

The breadboard breakout provides a simple way to attach the Analog Discovery 2 to a breadboard, without using the female headers that come with the device.

Here is the breadboard adapter, plugged into the end of a breadboard.

The Analog Discovery 2 can plug into the breadboard vertically, which is compact, but requires disassembly to put the test setup back in its box for carrying.  Here it is shown plugged into the last 15 rows of the breadboard, but I had to move it in two rows to keep the weight of the AD2 from tipping the breadboard.

I tried doing a little work with the breadboard adapter and found it to be a mixed blessing. I used it for testing a circuit where I needed both oscilloscope channels, one power supply, and one waveform generator, which would normally use 7 of the 30 wires on the AD2.  Some of the wires (the power, ground, and oscilloscope 1- and 2- wires) could be quite short, as they connected to the power busses on the breadboard, but the other wires had to be fairly long, as they had to skip past all the trigger and logic-analyzer inputs that I wasn’t using.  I could have plugged the adapter into the breadboard the other way around, but then the AD2 itself would interfere with convenient wiring.  It would have been nice to have the most frequently used connections at the tip of the adapter, instead of the base of the adapter.

For a fixed setup, where the oscilloscope channels are always looking at the same signals, the breadboard adapter is more convenient that the standard flywire connections, which have a tendency to slip off the double-ended male headers that I use for connecting them to the breadboard.  The female headers of the flywires are not designed for many cycles of attaching and detaching, and end up getting too loose after a while.

But for debugging, when the oscilloscope channels have to be moved rapidly from node to node, the breadboard adapter is less convenient than having the separate flywires—unless much longer wires are used (with the attendant problems of extra inductance and capacitive pickup of 60Hz interference). Losing 17 rows of the breadboard to the adapter is also a problem, as it leaves only 47 rows of a standard 64-row breadboard, or 15 rows of half-length breadboard for building the test circuit.

I think that I will use the adapter for lecture demos, where I have fixed wiring to carry around, as I can spend less time setting up the demo just before class, at the cost of slightly more time the night before. My standard lecture setup will use a full-length breadboard with the adapter in one end and a Teensy LC in the other end (for PteroDAQ demos) using up 31 of the 64 rows, leaving me with the equivalent of about a half-length breadboard in the center for the circuitry being demonstrated.

I don’t know yet whether I’ll find the adapter useful for regular debugging—probably not much.


Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Blog at

%d bloggers like this: