Gas station without pumps

2015 August 26

Few Santa Cruz businesses on bike league list

Filed under: Uncategorized — gasstationwithoutpumps @ 10:23
Tags: , ,

Every year the League of American Bicyclists publishes a list of “bicycle-friendly businesses”, which employers (including governments and non-profits) can apply to be on.

I was surprised at how few Santa Cruz employers were on the list:

  • Ecology Action (silver)
  • County of Santa Cruz (bronze)
  • Santa Cruz Seaside Company (bronze)

The League also has listings for communities, universities, and states.  The City of Santa Cruz has a silver listing, as does UCSC. UCD is platinum; UCSB is gold; UCB and UCI are also silver; UCLA and UCSD are bronze.  UCSB and UCD are also listed as businesses (their bike-friendliness towards employees, rather than towards students), with the same ratings.

UCSC does do a fair amount for bicycle commuters. I know of free showers in at least 4 buildings on Science Hill, and there are probably others. Most buildings allow people with offices to bring their bikes into their offices and there are card-operated bike lockers next to some of the more popular buildings.  Bike posts and other low-security bike parking are provided in adequate quantity (though the quality is not aways the best).  There are free tool stands at several places on campus and an on-campus bike shop (the Bike Co-op, which is not a full-service bike shop).  All the campus buses and the SCMTD buses that serve campus have racks for 3 bikes, and UCSC runs an uphill-only shuttle with a trailer for a dozen bikes from the Westside several times an hour.

Having seen what UCSB does, it looks like the main differences in bike friendliness come from UCSB’s campus being flat and compact, while UCSC’s is sloped at 4% and spread out.  The ravines and hills on the UCSC campus make it very expensive to provide additional roads and bike paths, and the 4% climb for a mile from the entrance to campus to Science Hill is daunting for many beginning bicyclists.

UCSC could do more to promote bicycling to campus, but there is a point where even large investments result in only small increases in bicycling—UCSC has invested much more heavily in transit options than in bicycling, as they expect that to make larger changes in student and employee behavior.  (And it seems to be working—UCSC has tripled in size in the last 30 years, with only modest increases in motor vehicle traffic.)

I don’t know whether Santa Cruz has been slipping as a bike-friendly place, whether other places have overtaken Santa Cruz, or whether businesses and governments in Santa Cruz simply can’t be bothered with the bureaucratic process of the League’s classification scheme.

What is the return to the community if more businesses were listed as bike friendly, or the community rating were higher? The listing is primarily a marketing tool—from a bicyclist perspective, what matters is what the infrastructure and policies are, not whether the LAB knows about them. And marketing is not that valuable to the community right now. It isn’t as if Santa Cruz were trying to lure more people to move here—we already have a serious housing crunch, particularly for the rental market. (Prices are high also: studio apartments are about $1600 a month, 2-bedroom about $2200 a month, I think.)  I do think that Santa Cruz would benefit from more ecotourism marketing—getting tourists to bicycle around town rather than clog the streets with their bad driving would be an improvement.

What Santa Cruz is trying to do is to lure more tech companies to Santa Cruz, to take advantage of the highly educated people already here and reduce the long-distance commuting to high-paying jobs in Silicon Valley. It is not clear whether getting a better bike-friendly community rating would help with that effort or not, though one of the big attractions for tech workers in Santa Cruz is not having to do the Highway 17 commute.  Being able to bike to work is a big attractor for engineers, particularly in software businesses (it is often our only source of exercise).  Whether it is an attractor for tech companies is a somewhat different question.

2013 May 10

National Bike Challenge

The League of American Bicyclists and California Bicycle Coalition are encouraging bicyclists to enroll in the National Bike Challenge.

Enrollment is free, and all you need to do is log your miles over the summer.  You get one point for each mile you ride and 10 points for each day that you ride at least a mile. Once you’ve earned a few points you get entered into lotteries for small prizes.

I’m not quite sure what the point of it is for LAB and CBC (perhaps, like Bike Week, it is an attempt to increase daily biking).

So far only 6 people have signed up from Santa Cruz, making out points per capita astonishingly low (57th in California).

2012 July 21

National Parenting Gifted Children Week

I just found out that last week was “National Parenting Gifted Children Week“—another one of those designated weeks that no one hears about (like National Folic Acid Awareness Week and National Engineers Week).

I found out about the week (too late to do anything, not that there is anything offered to do) from a book publisher that publishes a lot of support books for parents and teachers (which some people find useful, though I never have): Prufrock Press – blog – National Parenting Gifted Children Week.

I suppose that getting something designated as “National x Week” makes the people who argue for it feel like they’ve accomplished something, though it has never been clear to me exactly what.  Since there are so many “National x Weeks” it buys you no publicity, unless you have events scheduled all over the country simultaneously (like with National Bike Month and Bike-to-Work Week).  Incidentally, that event started as a number of local celebrations that gradually coalesced into a national movement that the League of American Bicyclists and other existing bike advocacy organizations joined—the locally run events are still the mainstay of the activity, though there are multiple efforts to try to coordinate them (not just LAB, but also biketoworkinfo.org).

National Engineers Week is trying to get engineering schools and faculty to put on events, but without a lot of success, because they chose a poor week for faculty or student involvement entirely for political reasons.  (Bike-to-Work week, in contrast, was chosen as a compromise between the various “beginning of the cycling season” dates around the country.)

National Parenting Gifted Children Week has no special activities (other than a blog tour that was not mentioned on any of the several parents-of-gifted-kids mailing lists that I read, so probably only reached the people who already read those blogs).  Unfortunately, this sort of feeble, invisible PR effort seems to be typical of organizations like NAGC and SENG. I’m sure that they mean well, but I can’t see enough positive results from their efforts to want to join the organizations.  There are 1000s of well-meaning organizations that want my time and money (and dozens who send me requests).  I’d rather support organizations that seem to be efficient and effective (like Second Harvest Food Bank and Planned Parenthood), even if I have no expectation of ever having any use for their services.

2011 February 9

Thanks, Dad

My Dad turns 85 today, so I thought this would be a good time to thank him for all the things he did for me.  I’m not talking of the routine things, like keeping us fed, housed, and educated, but the special things that made him unique.

One particular thing I’d like to thank him for  is for introducing me to science and engineering as a child.  Most people have the impression that kids learn math and science in the schools, and that improving schools is key to creating more scientists and engineers. Personally, I have some doubts about this—I think that for decades US schools have done little to train future scientists and engineers, and that our country has been relying on an apprenticeship system, in which scientists and engineers train their children, at least until they go off to college. That is largely how it worked for me and for many of my colleagues.

I learned about logarithms and complex numbers from my dad, long before I saw the subjects in school. I learned how to use a slide rule, and why it worked (he also bought me my first calculator, back when that was an investment comparable to getting a top-of-the-line laptop today). I learned Ohm’s Law and about impedances and Wheatstone bridges from him—I never had a formal circuits course in college, though I ended up teaching VLSI design as a EE professor for 4 years and as a computer engineering professor for another 14 years.

I remember one joke Dad was fond of, which only works in German.  One goes through a the names of a number of cities (X) and asks where one can find the X Brücke, the answer being “in X”, ending up with the Wien Brücke, which is an electrical bridge with RC elements on two of legs of the bridge, not a bridge in Vienna.  The circuit has a strong frequency dependence, and a variant of it (the Wien-Robinson-Brücke) is the core of the Wien bridge oscillator that was Hewlett-Packard’s first product. (Although I learned German in high school, my Dad was helpful in keeping me interested in it and in improving my accent.  I have since forgotten a lot of grammar and the genders of many of the nouns, but I don’t have much of an American accent.)

My dad also provided us with lots of science toys, often in the form of kits or surplus equipment.  I particularly remember building and playing with Heathkits: a vacuum-tube voltmeter, a grid-dip meter, and (the biggest project) an oscilloscope.  I recently did some image searches on the web to try to identify the model of oscilloscope we had. As best I can tell, it was an OM-2:

I have recently bought myself a used oscilloscope and signal generator on ebay, for not much more than the original Heathkit cost, but this is a Kikusui COS-5060 60MHz, dual trace scope with fancy triggering options, not a bare bones 2MHz scope.  Even analog electronics have gotten cheaper over the years, not just digital. I plan to teach my son how to use these instruments, and hope he gets as much out of it as I got out of the Heathkit.  Probably not, though, since he won’t be building it, and it doesn’t come with detailed explanations of how it works.

Kikusui COS-5060 oscilloscope and Clarke-Hess model 744 function generator, bought on e-bay for $102.50 and $36.76 respectively (plus rather expensive shipping).

The grid-dip meter was a kind of cool toy:  it is basically just a one-tube radio frequency oscillator, but when it is placed near an inductor that is part of another resonant circuit, you get a dip in the current in the grid of the tube when the frequencies match.  Why is that cool? Because you can mess up the images on TV sets by using the broadcast frequencies, the IF frequencies of the receiver circuits, or the frequencies of the raster scan. I believe I had a KnightKit G30 grid-dip meter:

I found that someone has scanned in the whole assembly manual for the Knight G-30.

Schematic for Knight G-30 grid dip meter.

The schematic for the Knight G-30 grid dip meter. Note the simple one-tube oscillator circuit. Image shrunk from scanned copy at http://victrolla.homeip.net/wo5s/junkpile/knight/g30/pages/30.gif

I’m not sure what model of vacuum-tube volt meter we had.  The closest match I can find to my memory is the V-7, but it doesn’t match my memory exactly.  I seem to remember only banana-plug inputs.  Perhaps some historian of Heathkits could help me figure out which model we had.  It was bought before the oscilloscope and the grid-dip meter, I believe, if that helps narrow the time period.

My Dad, my older brother, and I spent a lot of time building the Heathkits, but that wasn’t all the engineering education I got.  I can remember my Dad bringing home a coil winder from work, and we spent some time making our own iron-core transformers (though I forget now why we were making them).

Morris coil winder

I don't remember exactly what coil winder my dad brought home from work, but it looked a lot like this picture of a Morris coil winder from http://www.pavekmuseum.org/radiowkshp2010/morriswinder.jpg

It wasn’t just in electronics that my Dad supported my education.  He also bought the family a beautiful old microscope, which he recently shipped to me for my son to use. Unfortunately, there were some heavy things in the same box, and mirror got broken.  Does anyone know where I can get a replacement mirror for an Ernst Leitz Wetzlar microscope (from about 1930)?

Ernst Leitz Wetzlar microscope

This is the beautiful old microscope that I used in high school. I would like to restore the mirror that was damaged in shipping.

Since it is now science fair season (I judged one school fair last week and will judge another one this week, though the County Science Fair is still a month away), I would be remiss in not mentioning how Dad supported us through our science fairs.  I can only remember three projects now, two of mine and one of my brothers, but I’m sure there were others based on things we read in the Amateur Scientist columns of  Scientific American.  I read Amateur Scientist and Mathematical Games every month, even when the rest of the magazine was not interesting to me.  I now have the full collection of Amateur Scientist on CD-ROM, but reading it on-screen does not have the same appeal as turning to the back of the glossy magazine, and I have not done more than glance at the columns on the CD-ROM.  I tried re-subscribing to Scientific American a few years ago, but it had become like People in science, and I found it a complete waste of time.  I’ve done better with Make magazine and IEEE Spectrum.

Two of the science fair projects I remember could not have been the same year, because both involved the same piece of equipment: a cheap portable record player, which we used just as a constant speed motor.

  • My older brother hooked up a 3′ or 4′ wooden arm to the turntable, with wheel at the end, to get a wheel that moved at constant speed along a circular track.  He then piled sand on the track and experimented with making road corrugations.  I forget what the independent variables were—probably speed and weight, but the apparatus did make cool corrugations in the sand track.
  • I used the same turntable with a cardboard and aluminum foil disk and some stranded wire for brushes to make a low-frequency square-wave AC signal from a battery.  The power then went to two carbon electrodes (scavenged from dead batteries) in salt water, and I measured the hydrogen and oxygen released by DC and AC currents in some glass funnels with long tubes.  Unfortunately, the slowest speed of the turntable (33 1/3 rpm) produced 0.555 Hz, which was still too high a frequency to get any electrolysis, so I ended up using a DPDT switch and manually reversing the current about every 10 seconds (0.05 Hz).

The other project I remember was one on vortex rings (the fancy name for smoke rings).  We drilled a 1″ hole in the bottom of a coffee can, and tapped the lid to get very neat smoke rings.  The smoke was generated by burning tobacco in a corncob pipe.  We rigged a Raleigh bike pump to suck air instead of pushing it (just reversing the leather cup washer on the piston), so no one had to directly breathe the smoke.  I remember that the clear tubing got really disgusting buildups of tar—this project may have contributed to my never smoking, despite the coolness of smoke rings.  Nowadays one can buy a Zero Blaster with non-toxic smoke or an Airzooka to get really big vortex rings, but in those days there was no off-the-shelf solution.  I don’t remember what I did with the smoke rings now, though I do remember that I had made a cardboard shield with a Lucite window to view the smoke rings in still air.

As an engineering professor, I often find myself saying to students things my Dad said to me.  One of his most popular responses when asked “what would happen if … ?” questions was “Try it and see.”  I find myself telling that to senior design students who have been dragging their feet on their projects, uncertain how to design something and wanting someone to hand them a solution.

Besides science and engineering, my Dad taught me many things that are still important to me today.  For example, he taught me to ride a bicycle and do simple maintenance.  My bicycle is now my main means of transportation, and I ride a couple of thousand miles a year commuting to work.  Dad and I have done a couple of self-contained (camping) long-distance tours together: in 1992 from his house to the League of American Wheelmen rally in River Falls, Minnesota, together with members of his bicycling club and in 1994 from my house to North Hollywood, 466 miles down the California coast, together with my nephew.  We also attended a League of American Wheelmen Rally in Flagstaff, Arizona in 1988 that included a supported ride to Sunset Crater and Grand Canyon.

I couldn’t remember when the Arizona ride was and the League of American Bicyclists has a terrible web site with almost no historical records. After wasting a lot of time searching the web without finding anything useful, I switched to the older technique of looking at paper records.  I found my log book for the solo ride I took in 1991 from the Rally in Olympia, Washington back to Santa Cruz, which was my first self-supported tour, and the log book mentioned that I had done the Arizona ride “some time ago”.  Luckily, I had paper copies of the L.A.B. and L.A.W. newsletters back to 1987, so I found out when the Arizona Rally had been fairly quickly.

Although Dad and I have shared a love of cycling, I’ve never acquired his love of swimming.  I learned how to swim as a child, but never really enjoyed it.  Part of the problem was that I was a very skinny child with almost no subcutaneous fat, so I got seriously chilled after just a little while in the water.  Now, I’m verging on overweight, so perhaps I should try swimming again.  Of course, the ocean here is far too cold to swim in without a wetsuit, and the City pool has been closed due to budget cuts for over a year.  I don’t think I want to pay the high prices the University charges faculty to use their pool, so it is unlikely that I’ll be taking up swimming any time soon.

Disclaimer: I received no compensation for plugging any of the products depicted on this page. If someone wants to send me free electronic test equipment or a coil winder, let me know.

%d bloggers like this: