Gas station without pumps

2016 June 11

Teaching writing lab reports

Filed under: Circuits course — gasstationwithoutpumps @ 09:24
Tags: , , ,

Greg Jacobs, in his post Jacobs Physics: Report from the AP reading: Teach your class to write concise laboratory procedures. Please., asks high-school physics teachers to teach students how to write concisely:

Part (a) of our question asks for a description of a laboratory procedure. It could be answered in 20 words: “Use a meterstick to measure the height of a dropped ball before and after it bounces. Repeat for multiple heights.

“But oh, no … when America’s physics students are asked to describe a procedure, they go all Better Homes and Gardens Cookery Manual on us. Folks, it’s not necessary to tell me to gather the materials, nor to remind me to first obtain a ball and a wall to throw it against. Nor do you have to tell me that I’m going to record all data in a lab notebook, nor that I’m going to do anything carefully or exactly. Just get to the point—what should I measure, and how should I measure it.

Please don’t underestimate the emotional impact on the exam reader of being confronted with a wall of text. We have to grade over a hundred thousand exams. When we turn the page and see dense writing through which we have to wade to find the important bits that earn points, we figuratively—sometimes literally, especially near 5:00 PM—hit ourselves in the forehead. Now, we’re professionals, and I know that we all take pride in grading each exam appropriately to the rubric. Nevertheless, don’t you think it’s worth making things easy for us, when we be nearing brain fatigue? Just as good businesspeople make it easy for customers to give them money, a good physics student makes it easy for the grader to award points. 

Don’t think I’m making fun of or whining about students here. Writing a wall of text where a couple of sentences would suffice is a learned behavior. The students taking the AP exam are merely writing the same kinds of procedures that they’ve been writing in their own physics classes. It is thus our collective responsibility as physics teachers to teach conciseness.

As I’ve been spending far too much time this week grading an 11-cm-thick stack of design reports from my applied electronics course, I have considerable sympathy with Greg Jacobs’s view.

Technical writing is all about the 4 Cs: clear, correct, concise, and complete. Although there is always some tension between clarity and correctness, and between completeness and being concise, I generally find pretty high correlations between the four properties. Often, the very long reports are muddled, incomprehensible bundles of improperly applied factoids, while the essential information is missing entirely.

Part of the reason I have such a huge stack of papers to grade at the end of the quarter is that I have been giving “redo” grades for any errors in non-redundant representations (like schematic diagrams), putting a very high premium on correctness. For the class-D amplifier lab, 80% of the class had to redo the reports, mostly because they had not gotten the orientation of the FET transistors right in the schematics (a serious error that could lead to fires in the amplifier). I must have done a worse job at explaining the FET symbols—several times—than I thought, or maybe it is one of those things that people don’t learn unless they make a mistake and have it pointed out to them, repeatedly. I’ll be trying to fix the book and the lectures next year to reduce this problem.

I’ve also been down-grading students for lack of clarity (especially when the writing seems to indicate a lack of understanding, and not just inability to communicate) and for leaving out essential material (like not providing the schematics for their preamplifier as part of their amplifier lab report, not providing the parameters of the models they fit, or not providing the models they used at all). So clarity and completeness have had a fairly big impact on grades.

But I have not been giving bonus points for being concise, which I probably should start doing, as some students have started using a kitchen-sink approach, throwing in anything that might be tangentially related to the subject. Unfortunately, these are the students most likely to have unclear and incorrect reports, and they leave out the essential material in an attempt to throw in useless background, so their attempts at completeness generally backfire. I need to discourage this behavior, undoubtedly learned in middle school and high school, and get them to focus on the stuff that is unique to their design, rather than telling me Ohm’s Law or the voltage-divider formula over and over.

2016 March 19

Introduction of a technical paper

Filed under: Uncategorized — gasstationwithoutpumps @ 12:19
Tags: ,

I was recently pointed to a post The 5 pivotal paragraphs in a paper | Dynamic Ecologythat gives advice about how to structure a scientific paper.  Most of the advice is good, but I disagree with one statement:

First paragraph of the introduction—you should use this paragraph to embed and contextualize your work in the context of a large classic, timeless, eternal question. What drives species richness. Or controls abundance or distribution. Or gives the best management outcome. Or explains why species are invasive. Or controls carbon flux. You of course are not going to fully answer this question. Indeed no one person, and probably even no generation of scientists will fully answer this question, but ask a really big question. You can then use this big question setup to spend the rest of the introduction summarizing past attempts to answer this question, and show how they have all failed to address the key issue you are about to address.

The first paragraph of the introduction should be the specific point of the paper, not general BS. I read far too many papers (particularly student papers) where there is a huge wad of background dumped before the author gets around to telling me what they are writing about.  It irritates me—especially when I already know most of the background.

Don’t bury the specific goal of the paper at the end of the introduction—your readers may never get that far if you start out with general BS. Start with the specific goal of this paper—not the overall goal of a long-term research project or (even worse) the fundamental dogma of biology.

There is a term for this in journalism—it is known as “burying the lede”, which is considered a major flaw in news reporting.  It is a similarly large flaw in scientific writing.

I recommend that the first paragraph of a scientific article give the specific research question being answered in the article, and that the rest of the introduction then be used for the contextualizing that question—why is it important? how does this study answer it? For engineering reports, the first paragraph should give the main engineering design goal and constraints, again using the rest of the introduction to say why that was important.

If the conclusions of the paper do not answer the question raised in the first paragraph of the introduction, then the question is not specific enough.


2015 November 23

Meeting for teachers of writing to engineers

Filed under: Circuits course — gasstationwithoutpumps @ 19:00
Tags: , ,

Last Spring I got a small grant from the Academic Senate to create a new “Disciplinary Communications” course for the bioengineering majors (a $7,000 “partial course relief” for 2015–16).  Most of the effort of creating the course happened last year, as we needed to offer the course in Spring 2015, but the money comes for this year.  I’m not actually taking any course relief this year, though my load is lighter than last year, since I’m not doing two overload courses this year.  The money (as all our course relief money) is being spent on hiring a lecturer—paying part of the salary of the lecturer teaching the new writing course.

But I felt that I ought to be doing something this year on improving “disciplinary communications” for bioengineers, in order to have something to report at the end of the year for the grant.  Since the new course was designed last year, the main effort this year will be on tweaking that course and other courses our students do that involve writing.  Rather than work just with the instructor of that new course, I thought it would be useful to gather all the faculty who teach writing to engineering students, to discuss (according to the message I sent out):

  • course design
  • teaching techniques
  • assignments
  • grading techniques
  • use of TAs or graders
  • creation of a “Professional Learning Community” to meet on a regular (quarterly?) basis

There was no set agenda for the meeting—just a chance to meet and talk about what we do. We had a pretty good turnout: 3 ladder-rank faculty, 4 writing instructors, and 1 staff person who teaches writing to a small group of minority students.

After self-introductions we had a wide-ranging conversation about assignments people gave, challenges they faced, approaches to making assignments work better, and so forth.  We did not talk much about TAs and graders, course design, or grading techniques, concentrating more on assignments and teaching techniques.

I’m a lousy note-taker, so I don’t have good notes of what was discussed, but I remember a few things.  I’ll present them here mainly as they apply to me, since that is what I remember best.

None of the ladder-rank faculty are teaching courses where writing is the primary content of the course, but improving student writing is a secondary goal of their courses. In my case, I’m (thankfully) not teaching either the technical writing for bioengineers course nor the senior thesis writing course this year, but I do provide a fair amount of writing feedback both in the Bioinformatics: Models and Algorithms course and in the Applied Electronics course. In the bioinformatics course, there are a couple of writing assignments, but most of the feedback is on in-program documentation. In the Applied Electronics course, there is a weekly design report due, which is centered on the graphics (block diagrams, schematics, and fits of models to measured data). Other courses include assignments to write abstracts, write proposals, write standard operating procedures, and other assignments typical of both academic and industrial writing tasks.

One aspect of teaching writing that I’ve never had much luck with is peer editing—another of the ladder-rank faculty brought this topic up as one of the challenges that help was needed on.  A couple of the writing instructors agreed that peer editing was hard, because the students had no notion of “editing” as an activity. What they suggested was having a set of specific questions for the peer editors to answer—questions relevant to the piece they were editing, like “what is the research question? Is there a summary of results? Is the approach clear?” for editing an abstract.  Without specific guidance, students tend to fall back on the if-you-can’t-say-anything-nice-don’t-say-anything meme, and provide useless “looks good to me” comments.  One technique that the faculty member who raised the issue has tried (with mixed success) is getting students to rewrite another student’s abstract in their own words.  Although this often pointed out problems in the original writing, it sometimes just reflected the inability of the editing student to write coherently.

One idea that seemed to come as a bit of surprise to some of  the writing instructors was creating the figures and figure captions of a document first, and then writing the paper around the figures.  This is a common approach in some research groups in our department, and one that some students will have to face. One of the writing instructors pointed out that the poster assignment (used in two of the courses) is good preparation for this.

We all pretty much agreed that there was no place in the writing instruction students were getting about good presentation of data and generation of figures. I mentioned that one of our junior faculty is interested in creating a course centered on scientific graphics, but it wasn’t clear whether he’d get to teach it next year or not.  I felt that students in my Applied Electronics course got a lot of instruction and got pretty good at displaying data (at least the scatter diagrams and fit models for that course), but that they really struggled with the notion of block diagrams and organizing problems into subproblems. One of the writing instructors, who saw the students mostly after they had had the applied electronics course, saw more problems with data presentation than with block diagrams.  This may be because of different expectations of the block diagram, or it may be that the data representations her students needed were not among the few types covered in Applied Electronics.

Another form of writing that a lot of students were not getting adequate feedback in was lab notebooks. Unfortunately, the different disciplines have such different expectations of the content of a lab notebook that it is hard to provide any sort of standardized assignment. A couple of the instructors who teach Writing 2 classes, mainly to STEM students, do include an observational-field-notebook assignment, which at least gets across the idea of taking notes as you go, and not trying to reconstruct what you did at the end of the day (a flaw I’ve seen in several of the Applied Electronics labs) or the end of the quarter (a flaw I’ve seen in some senior theses).

We did discuss the strategy of setting high expectations on the first assignment by giving detailed feedback on that assignment, with reduced checking on subsequent assignments.  This helps keep the grading down to an almost sane level, and the students still benefit from the practice, even if not everything they do is checked. I’ve certainly noticed on the bioinformatics assignments that by the 4th or 5th assignment I only need to spot-check the internal documentation, or check it for students who are struggling with the concepts of the assignment, as the better students generally are routinely producing decent documentation by then.

We discussed various things we could do that would be generally helpful, and I ended up with two action items:

  • Create a shared Google Drive folder where we can put assignments and examples of student work (access limited to faculty involved in the group).
  • Organize another meeting for next quarter. People were pleased enough by the meeting to want to meet again.

I don’t think that anyone will make any radical changes to how they teach as a result of the meeting, but I think that several of us came away with the nugget of an idea for a small improvement we could make. It was also very refreshing to have a discussion of teaching techniques—something we professors don’t often get a chance to engage in meaningfully.  Most attempts to foster such discussions are way too broad (like the Academic Senate teaching forums) in an attempt to include everyone, or way too bureaucratic (like the attempts of the administration to push assessing “program learning outcomes”).  Today’s informal discussion seemed to me to be focused enough to be productive, yet broad enough to involve many different courses.  I’m looking forward to doing it again next quarter.

2015 June 4

Last lab of Spring 2015

Filed under: Circuits course — gasstationwithoutpumps @ 22:50
Tags: , , , ,

I spent all day today in the lab for the electronics class, from around 9:30 a.m. until the last students packed up and left at 8:30 p.m.  This was the last lab of the quarter, and I had decided to stay until all the students had left.

Most of the students got their EKG boards soldered up and working today (there may be a few who left without demoing their working boards, and the last group at 8:30 p.m. had just had some more wiring errors pointed out to them).

I’m amazed sometimes at how basically competent designers can be very careless in their wiring, rushing through the placement and soldering without carefully checking each connection. The result is a 10-minute savings in wiring time, and a 4-hour or more cost in debugging and resoldering time.

Tomorrow in class I plan to go over a couple of 1-transistor amplifier designs, but that shouldn’t take the whole time.I’ll give them some pointers to companies that sell parts and kits that might be of use to them: Digikey, Mouser, Jameco, Sparkfun, Adafruit Industries, Itead Studio, Seeedstudio, Smart Prototyping, Elecrow, OSH Park, Makershed, … . And I’ll be sure to mention some local resources: Santa Cruz Electronics and Idea Fab Labs.

I also hope to remind the students of some of the goals of the course, and try to see whether the goals have been met.  I quote from the supplemental form for the course renaming that was approved this spring (effective next year).

The Program Learning outcomes for the bioengineering program are as follows:
A bioengineering student completing the program should

  • have a broad knowledge of science and engineering disciplines including biology, chemistry, physics, mathematics, statistics, and computer science; [Not relevant to this course]
  • be able to apply their broad knowledge to identify, formulate, and solve engineering design problems; [Students passing BME 101L will be able to design simple amplifiers and RC filters for a variety of sensor-interfacing applications.]
  • be able to find and use information from a variety of sources, including books, journal articles, online encyclopedias, and manufacturer data sheets; [Students passing BME 101L will be able to find and read data sheets for a number of analog electronics parts.]
  • be able to design and conduct experiments, as well as to analyze and interpret data; [Students passing BME 101L will be able to measure signals with multimeters, oscilloscopes, and data-acquisition devices,  plot the data, and fit non-linear models to the data.]
  • be able to communicate problems, experiments, and design solutions in writing, orally, and as posters; [Students passing BME 101L will be able to write coherent design reports for electronics designs with block diagrams, schematics, and descriptions of design choices made.] and
  • be able to apply ethical reasoning to make decisions about engineering methods and solutions in a global, economic, environmental, and societal context. [Not relevant to this course]

So tomorrow I plan to ask where the students feel that they are able to design simple amplifiers and RC filters, whether they can find and read data sheets for analog parts, whether they can measure signals with multimeters, oscilloscopes, and data acquisition devices, whether they can plot the data and fit non-linear models to it, and whether they can write coherent design reports.

I had some unofficial goals for the course also: to turn a few of the students into electronics hobbyists, to encourage a few to declare the bioelectronics concentration of bioengineering, to teach some tool-using, maker skills (calipers, micrometer, soldering iron, …), and to make all of them better at attacking problems by dividing into subproblems with clear interfaces between the subproblems.  I’ll ask about those things also.

I’ll also want some detailed suggestions for the course.  (So far I’ve gotten one: fume extractors for the lab for use when soldering.)  Some things I’m curious about include

  • Should the first amplifier lab (the low-power audio amp lab) be changed to use a single power supply and solder up the board, so that the board can be used as a preamp for the class-D power amp lab later?  We could then also do an emitter follower (common collector) class-A amplifier using the preamp board.  If they solder up a pre-amp, then we could eliminate soldering the instrumentation amp for the blood pressure lab.
  • Should I redesign the prototyping board to have more room for resistors and no instrumentation amp slot, making it more suitable for the preamp lab and the EKG lab?  A new custom board is still cheaper than something like the $4 perma-proto boards from Adafruit.
  • Should I switch from 18-turn trimmer pots to 3/4-turn trimmers with shafts?  The ones with shafts tend to be easier to turn, but not as precise and the multi-turn worm gear pots.  There are 3/4-turn trimmer pots that play nicely with a breadboard, though they take up a bit more space than the worm-gear trimmers we used this year.
  • Are there tools or parts that almost no one used?
  • Are there tools or parts that should be added to the lab kit? If so, at what price do they stop being attractive?
  • Should students buy oscilloscope and voltmeter probes, like they do at UCSB, rather than having to deal with broken probes or probes locked inconveniently to equipment?
  • Should there be more practice questions in the book? (currently I have very few, with almost all the questions being part of prelab assignments)
  • Does there need to be a “what you are already expected to know” section or chapter, to review material that students are supposed to know already?
  • Which labs took up too much time for the amount of learning achieved? How can they be streamlined?
  • How much time did the course really take total for the quarter?
  • What suggestions do students have for more fun labs?

2015 February 25

Freshman design seminar writing notes

Along with the senior-thesis writing course this quarter, I’m also teaching a freshman design seminar. Many of the problems in their first design reports are similar to the problems I see in senior theses (Senior thesis pet peeves, More senior thesis pet peeves, and Still more senior thesis pet peeves). I hope that by catching them early, I can squelch the problems.

Here are some things I saw in the first design report turned in by the freshmen:

  • Every design document should have a title, author, and date. If the document is more than one page log, it should have page numbers.
  • Passive voice should be used very sparingly—use it to turn sentences around to pull the object into the first position, when that is needed to get a smooth old-info-to-new-info flow.  Sometimes you can use it to hide the actor, when you really don’t know who did something, but that should be very rare.
  • Errors in schematics, programs, block diagrams, and other low-redundancy representations are very serious.  In the circuits class, any error in a schematic triggers an automatic REDO for the assignment.  I’m not as harsh in the freshman design class, but there is no notion of “just a little mistake” in a schematic.
  • The battery symbol is not the right way to show a voltage source that is not a battery.  Use the power-port symbol, to indicate connect to a power supply that is not included in the schematic, or include the Arduino board from which you are getting power as a component in the schematic.
  • Bar charts are not appropriate for all that many data representations in the physical and biological sciences.   If you have 2-D data, use a scatter diagram.  A bar should only be used when the area of the bar communicates the quantity of something that is labeled in discrete classes.  (And even then a single point is often clearer.)
  • Captions on figures should be about a paragraph long.  Remember that people generally flip through a paper looking at the pictures before deciding whether to read it.  If the figures and captions are mysterious, they’ll give up without ever reading the paper.  A lot of academic authors, when writing a paper for publication, start by choosing the figures and writing the captions.  Those figures and captions then form the backbone of the paper, which is written to explain and amplify that backbone.
  • In academic writing, figures are treated as floating insertions, not fixed with respect to the text.  Therefore, it is correct to refer to the figures by name, “Figure 1”, but not by location (“above” or “below”). Every figure in a paper should be referred to explicitly by name in the main body of the text, and the floating insertion put near where the first reference to the figure occurs.
  • Citations in modern scholarly works are not done as footnotes—those went out of style 50 or 60 years ago, and only high school teachers still use that style.  Modern papers put all the citations at the end (in any of several different styles, usually specific to a particular journal).  I have a slight preference for reference lists that are sorted by author, rather than by order cited in the paper, and I have a preference towards high-redundancy reference list formats rather than minimalist ones, but I don’t have a particular style that I recommend.
  • There is no point to saying “web” in a citation—if something comes from the web, then give me the URL (or DOI). For material that is only on the web (not citable as a journal article), you must give the URL or DOI.
  • When typing numbers, never start them with a decimal point—use a leading zero to prevent the easily missed leading decimal point. Even better is to follow the engineering convention of using numbers between 1 and 1000 with exponents of 10 that are multiples of three.  That is, instead of saying .01, or even 0.01, say 10E-3.  The advantage is that the powers of 1000 have prefix names, so that .01A becomes 10mA.  Don’t worry about significant figure meanings, because engineers express significance explicitly, not through imprecise sig-fig conventions.  That is, and engineer would say 10mA±2mA, not 1.E-2A (which a physicist would interpret as 10mA±5mA) or 1.0E-2A (which a physicist would interpret as 10mA±0.5mA).
  • In describing where components are in a schematic diagram, “before” and “after” don’t make much sense.  I have no idea what you mean if you say that a resistor is before an LED. When engineers use “before” or “after” it is generally in an information-flow sense.  For example, you may filter before amplifying or amplify before filtering, but if a resistor and capacitor are in series, neither is “before” the other.
  • Students use “would” in many different ways, but mostly incorrectly, as if it were some formal form of “was” or “will be”, while it is actually a past subjunctive form of the modal auxiliary “will”.  There are many correct uses of “would” in general English, but in technical writing, it is usually reserved for “contrary to fact” statements. When a student writes “I would grow bacteria for 2 days”, I immediately want to know why they don’t.
  • The pronoun “this” is very confusing, as the reader has to work out what antecedent is meant. A lot of effort can be saved if “this” and “these” are not used as pronouns but only as demonstrative adjectives modifying a noun. This usage is much easier for people to follow, as the noun helps enormously in figuring out the antecedent.  If you can’t figure out what noun to use, then your reader has no hope of understanding what you meant by “this”.
  • “First” is already an adverb and needs no -ly. The same is true of “second”, “third”, and “last”.  For some reason, no one makes the mistake with “next”, which follows the same pattern of being both an adjective and an adverb.  I wonder why that is?
« Previous PageNext Page »

%d bloggers like this: