Gas station without pumps

2014 October 10

Reference list for women in science

Filed under: Uncategorized — gasstationwithoutpumps @ 21:45
Tags: , ,

Every year I spend part or all of one of the classes in my “how to be a grad student” course on talking about women in science—more specifically about women in computational fields.  For the last couple of years, I’ve been fortunate to have one of the more senior female grad students lead the discussion, but she plans to finish her thesis this year, so I’ve asked her to try to spread the expertise around so that someone else could take over next year.  She has put together a panel for the class consisting of herself, a female researcher in the field (and alumna of our program), a female faculty member from another department who has done published research into ways to increase female participation in computer science, and an advising staff member with yet another valuable view-point. All three of the other panel members are likely to be here for several years to come, and they could easily incorporate a grad student onto their panel, should some other grad student wish to step up in future.  So this seems like a good way to create an institutional continuity even as grad students come and go.

I am looking forward to how the panel works, since we’ve not had a panel before.  We also have 6 women and 7 men in the course, which is as close as we can come to gender parity with an odd number of students.  That should help with the discussions (though last year went ok, despite having an all-male incoming group of grad students).

Earlier this week I came across an excellent list of resources on women in tech fields on the Slow Searching blog.  I recognized a few of the articles as good ones and the rest look promising, though I’ve not had time to read them yet.  Even more recently on the same blog, there was a pointer to Project Implicit at Harvard, which lets people explore their unconscious biases.  I’ve not had time to follow up on Project Implicit either.  Perhaps if I get the grading done this weekend I’ll have a little time left to do some reading.

2014 September 21

Narrowing the gender gap in CS

Filed under: Uncategorized — gasstationwithoutpumps @ 13:41
Tags: , , ,

Today’s post collects a few drafts of pointers to articles about narrowing the gender gap in computational fields.  The first article is from CACM,  Computing’s Narrow Focus May Hinder Women’s Participation | News | Communications of the ACM:

In her position as a professor of computer science at Union College, Barr found contextualizing computer science classes led to an increase in female enrollment. “We said, ‘let’s show them that computer science can be useful by giving themes to the introductory CS courses, so students can see their relevance,’” she said. “For us, it’s been enormously successful. Ten years ago we taught the introductory course to 29 students, and 14% of them were women. This year there were over 200 students, and 39% of them were women.” Beyond college, Barr said, she’d also like to see “a bigger funnel into the corporate world and the tech industry, with people coming from many other majors. It doesn’t have to be just CS majors.”

The suggestion there is that providing interesting applications in the intro courses helps retain student interest, particularly among female students.  The  article seems to have struck a chord with some female computer scientists.  Here, for example, is a response from Katrin Becker’s blog:

A big part of what attracted me to computer science was what I could do with what I was learning. That, and that programming is largely about lists, organizing, and puzzles—all things that women often find appealing.

Personally, I think that well-designed intro courses that excite students about the possibilities of the field would serve to retain more men as well as more women, but it is certainly possible that the effect is stronger for some groups of students than for others.  Exactly what applications are chosen may make a difference also—picking applications that fit male stereotypes (car engine controllers and missile guidance systems?) may even be counter-productive in narrowing the gender gap.

Another possible explanation for why women make up such a small part of engineering and the “hard” sciences comes from an article in The Washington Post,  Catherine Rampell: Women should embrace the B’s in college to make more later – The Washington Post:

A message to the nation’s women: Stop trying to be straight-A students.

No, not because you might intimidate easily emasculated future husbands. Because, by focusing so much on grades, you might be limiting your earning and learning potential.

The college majors that tend to lead to the most profitable professions are also the stingiest about awarding A’s. Science departments grade, on a four-point scale, an average of 0.4 points lower than humanities departments, according to a 2010 analysis of national grading data by Stuart Rojstaczer and Christopher Healy. And two new research studies suggest that women might be abandoning these lucrative disciplines precisely because they’re terrified of getting B’s.

The observation is that women are more deterred from entering a field by getting low grades than men are—they found that women who got Bs and Cs in their intro courses changed majors to ones that graded more leniently, while men with low grades continued slogging along in their initially chosen major.  The data was from economics, not engineering, departments, and I don’t know whether the same behaviors apply. The article cites another study that suggests that the same behavior occurs in STEM fields:

Arcidiacono’s research, while preliminary, suggests that women might also value high grades more than men do and sort themselves into fields where grading curves are more lenient.

The suggested action is to advise women not to be intimidated by B grades.  I don’t know whether that has been attempted anywhere, but I have my doubts that just telling people not to be afraid of Bs is really going to change their strategies for maintaining their self images.  Catherine Rampell also makes a rather careless mistake in saying

Remember, on net, many more women enter college intending to major in STEM or economics than exit with a degree in those fields. If women were changing their majors because they discovered new intellectual appetites, you’d expect to see greater flows into STEM fields, too.

The mistake is in assuming that switching to and from STEM fields is equally easy.  In fact, the much larger set of required course and longer prerequisite chains make it much easier to switch out of STEM fields than into them.  Freshmen are advised to prepare for the most restrictive major they are interested in to keep their options open.  What seems to be happening is that women bail out of the tough majors at a higher level of performance than men do.

Of course, it is a mistake to think of “STEM” as monolithic entity. From The Shriver Report – 10 Reasons Why America Needs 10,000 More Girls in Computer Science:

2. Girls Are Already Making the Grade in Bio (Science)

Using AP test-taking as a measure of pipeline illustrates the true nature of STEM participation for girls. Female test-takers exceed or are close to parity with males in psychology, calculus, biology, and chemistry, but only account for 18 percent of AP computer science test takers. According to the National Center for Education Statistics, women already make up nearly 60 percent of degree recipients in biology, a whopping 85 percent in health professions, and around 50 percent in social sciences. In fact, 20 times as many girls took the AP biology test, as did AP computer science. The majority of women in ’STEM’ fields choose life sciences, so simply saying we need to increase the number of women in STEM is a mistake. Instead, we need to narrow the conversation to focus on computing and IT fields, where the shortfall is the largest.

Not only are women already over-represented in biology at the BS level, but biology has been over-producing PhDs for a couple of decades relative to the demand, so that jobs in biology research are very difficult to get and generally pay substantially less then other science and engineering fields.  There are some very high paying jobs in biomedical research, but the demand for them far exceeds the supply—the “postdoc holding tank” in biology is enormous.

I don’t have any action items coming out of these articles—I’ve already put together a freshman design course for the bioengineering majors that did hands-on, applied work providing applications for some low-level computer programming.  While I’ll continue to try to improve that course, there aren’t many lower-division courses taught by our department for majors (the others are bioethics and a no-prereq intro to biotechnology, both of which are dominated by non-majors).  The Baskin School of Engineering has just created a Computational Media department, which will take over the game design program (a predominantly male program) from CS, but which is expected to create some new computational media courses.  we’ll have to see whether these have any effect on the number of women in computational fields at our university.

2014 June 20

Male- and female-dominated fields

In Percentage of Bachelor’s degrees conferred to women, by major (1970-2012), Randal S. Olson posted the following image:

History of gender balance in different fields in college.

History of gender balance in different fields in college.

He makes the point that there is no “STEM” gender gap. Indeed, the sciences and math are doing fine on gender balance. There are, however, large gender gaps in the engineering and computer science on one side and health professions, public administration, education, and psychology on the other. The post with this graph talks mainly about the computer science and engineering gender imbalance, which is somewhat larger than the gender imbalance on the other side (particularly if you take into account that about 60% of bachelor’s degrees now go to women).  He talks about the other side of the gender imbalance in The double-edged sword of gender equality, though without shedding much more light on the subject.

Computer science is a particularly strange case, as it has seen more fluctuation both in raw numbers of students (data not shown here) and gender balance than any other field. Other fields have seen large shifts in gender balance, but they have generally been gradual and nearly monotonic—not reversing course in the early 1980s.  It seems to me that the biggest drops in the ratio of women in CS came at times when the overall number of students in CS was dropping (like after the dot-com bubble burst in the 2000).  When CS grew, the number of women grew faster than the number of men.  When CS shrunk, the number of women shrunk faster than the men.  Perhaps if CS education had had a steady growth, rather than the boom-and-bust cycles that have plagued it since the late 1970s, it would not have had such a mysterious rise and fall in proportion of women in the field. The boom-and-bust cycles are not driven by the real need for CS degrees, but by media hype about relatively small shortages or excesses of personnel.  I believe that the demand for CS degrees has been stabler than the supply (unlike most other fields, where the supply has been steady even as demand has fluctuated).  Sorry, I don’t have statistics handy for that, and I’m too lazy to spend hours going through the government databases trying to match up labor market information with degree information.

Fixing the gender gaps so that most fields can draw from the full population will be difficult. Getting more men into the health professions and education could probably be solved fairly easily by paying more—and there is no societal need for more psych and public administration majors than are currently being produced. But, because CS is already a high-paying field for which there is more demand than supply, the difficulty of getting more women to choose and complete the major is a societal problem that seems difficult to address.

Some people have suggested that eliminating H1B visas for importing temporary CS workers (who are predominantly male) might help.  I don’t think that the number of H1B visas is large enough to make that big a difference, though I support replacing the H1B visas with green cards.  If there aren’t enough American workers in a field, we should import the workers on a permanent basis, not with a temporary indentured-servitude system that just serves to export the technical expertise when the workers are sent home.

Some people have suggested that a big part of the problem is the disrespect women are treated with in some workplaces—which would help explain the “leaky pipeline” phenomenon, but not why female high-school and college students are not entering the field. Student choices in high school and college are shaped much more by peer pressure and mass media than by anything about the future workplaces—so the problem is one of changing the culture in high schools and colleges—a difficult task.  There has been some success at some smaller schools (like Harvey Mudd), but a large part of that has come from aggressive admissions policies that aim for gender balance in the field at admissions time—a route not open to public schools, who can’t apply large differences in admissions based on gender.

I’m currently in charge of a bioengineering program, whose graduating class was about 36% female (13/36), and a bioinformatics program that is so small that statistics are pretty meaningless (only 2 graduates a year, both male this year). I would like to see the number of women in majors increase, particularly in the concentrations that lead to higher paying jobs (the concentrations that are further from MCD biology).  We get a few students switching to the bioengineering from MCD biology, but not many, as those students don’t take the rigorous math and physics needed for the bioengineering degree—we really have to get our students in the first year.  I’m still trying to find ways to reach those students who would be good engineers, but don’t realize it until too late.

 

2011 January 5

Keeping women in the science pipeline

Filed under: Uncategorized — gasstationwithoutpumps @ 23:26
Tags:

In the 16-page (13-page, plus 3 pages of citations) report Keeping Women in the Science Pipeline by Mary Ann Mason, Marc Goulden, and Karie Frasch, all from the University of California, Berkeley, has an interesting analysis of why women are not proportionately represented at higher ranks in science in academia:

… we found that family formation—most importantly marriage and childbirth—accounts for the largest leaks in the pipeline between Ph.D. receipt and the acquisition of tenure for women in the sciences.

They found that the biggest losses were fairly early in the pipeline, with much lower probabilities for married women with children to get a tenure-track position than other groups, but that single women without children had about the same probability as married men with children.

A big chunk of the problem seems to be total workload:

The time pressures of academia are unrelenting for most faculty in the sciences, who work on average about 50 hours a week up through age 62. When combined with care-giving hours and house work, UC women faculty with children, ages 30 to 50, report a weekly average of over 100 hours of combined activities (compared to 86 hours for men with children).  And women faculty with children provide an average of more than 30 hours a week of care-giving up through age 50, while family responsive policies rarely address this long-term career-life issue.

but the remedies they suggest don’t really get to this core problem.  Still, they have a lot of good policy suggestions that would mitigate some of the problems with loss of women from the academic pipeline.

The report as a whole seems well researched and would be of interest to any women progressing through the academic ladder, as well as to anyone who has influence over family-leave policies at universities.

%d bloggers like this: