Gas station without pumps

2014 November 24

A seat at the table

Mark Guzdial in #Gamergate as a response to re-engineering: BPC as a conspiracy to change computing wrote

We in the Broadening Participation in Computing (BPC) community are aiming to achieve a similar kind of social engineering that the Gamergate supporters are complaining about. I am part of a vast, international (though maybe not particularly well-organized) conspiracy to change computing culture and to invade computing with many women and members of under-represented groups. We are “actively plotting to influence” computing. The Gamergate supporters argue that the conspiracy is about “artistic aspirations.” In BPC, we say that we’re about social justice, equity, and diversity. From the perspective of the “engineered,” the difference in purpose may not make much difference. One of the pushbacks on the call I shared to eliminate nerd culture was, “Can’t we just shape/change nerd culture?” Do the nerds want to be changed?

What might a response to BPC look like? Might well-prepared, privileged male and white/asian CS students complain about efforts to give seats in classes to women or under-represented minorities whom they may perceive as less-prepared?

I have no objection to giving seats in classes to anyone capable of  learning the material, but I believe that this needs to be done by increasing the number of seats, not taking them away from other students.  I’m all in favor of expanding the pipeline, but not of holding back those who have already started on the path, so that others can “catch up”.

There’s a general awareness that there’s a problem, but there’s less conviction that it’s an important problem or that there’s an obvious way forward to fixing it.

I agree that the problem of gender imbalance and racial imbalance in CS is an important one, but I’m less convinced than Mark that there is an obvious, equitable way to fix the problem. He seems to think that lotteries are the way to go:

In NPR When Women Stopped Coding in 1980′s: As we repeat the same mistakes, Mark wrote

I understand why caps are going into place. We can’t support all these students, and there are no additional resources coming. What else can CS departments do? We might think about a lottery or using something beyond CS GPA to get those seats, something that’s more equitable.

I disagree with him strongly on this. I responded on Mark’s post with the following comment:

I’m not sure that I agree with “We can’t support all these students, and there are no additional resources coming. What else can CS departments do? We might think about a lottery or using something beyond CS GPA to get those seats, something that’s more equitable.”

Granting access to a limited resource to those whose prior achievement is highest seems to me to be highly equitable. Denying higher achievers because they are of the wrong race or gender does not.

Increasing the resources available for teaching, so that we don’t have to restrict who majors in a field seems like a good strategy, as does providing slower on-ramps for those who did not have good early training. But denying entrance to those who may have dedicated their lives to the field, just because others did not have (or did not take) the opportunity to reach that level of achievement—that does not seem “equitable” to me.

Note: I may be biased here, because my son is a white male majoring in computer science who has been doing recreational programming as a major activity since he was 10 years old. I would be very offended if he had to win a slot in the major by a lottery—college admissions alone is enough of a lottery these days.

Are we then to tell students not to form any intellectual passions in middle school or high school, because doing so will get them labeled as “privileged” and denied further opportunity? Or should they only form passions for things that no one cares about, so that no one will try to take their passions away from them?

Although I’m not fond of sports analogies, it is common for people to point out the absurdity of the lottery position by suggesting that the same be applied to sports teams. The football teams at the Big 10 schools should not consist of those privileged athletes who started young, got the best training, and had the best performance in high schools, but should be assigned by lottery to anyone who is interested in playing, even if they have never picked up a football in their lives. Why should only those who had the good fortune to be large, fast, and strong be allowed to play?

Michael S. Kirkpatrick countered my comment with

It’s often so hard to be objective when it comes to perceptions of equity. As Anatole France observed, “In its majestic equality, the law forbids rich and poor alike to sleep under bridges, beg in the streets, and steal loaves of bread.” The open question is whether those students truly are higher achievers, or if they are just starting from an advantageous position. In that case, would it not be more equitable to give the opportunity for students who did not have prior opportunities?

His argument makes the assumption that primary goal of college education is a social justice function—to provide opportunity for those who have not previously had it. While a generous impulse, this philosophy taken to extremes results in eliminating grad schools and upper-division courses to create more freshman courses, and even replacing freshman courses with remedial courses, resulting in college as very expensive high school (or, in the case of some athletes in scandal-ridden schools, grade school).  Increasing opportunity is a great thing, but it shouldn’t be allowed to kill off the other great things about universities: like the opportunity for people to stretch their minds to the limit, to share ideas with other intelligent and passionate people, and to advance the state of the art. While universities do serve an important role in aiding social mobility, it is not, in fact, their primary function in society.

A variant of Kirkpatrick’s argument has often been used to kill off gifted education in public schools (because of a correlation between socio-economic status and identification for gifted programs)—forcing the parents of gifted students to take on educating their children themselves, which only the wealthy (or upper middle class) can easily afford to do. This approach increases the disparity between the wealthy and the poor, as the gifted students with less wealthy parents get much more limited educations—defeating the original goals of “equity” that killed off the public programs for gifted students.

There are good reasons why many parents of gifted kids started referring to “No Child Left Behind” as “No Child Allowed Ahead”, as it was much easier for schools to reduce their achievement gaps by slowing down the students who were learning fastest than by speeding up those learning slowest. Guzdial’s approach to rationing CS education seems to be following the same model.

Bonnie responded to Guzdial’s post with comments about what her college is doing to broaden participation, speaking both of successes and failures, and ending with

I just don’t know how we can make up for the poor education they received in K12. And that, I think, is where the true inequity lies.

Here I agree with Bonnie—if the problem is that some students get support early and others get support late, the solution is not to slam the door in the faces of those who got early support, but try to extend early support to more people. For that matter, I’m not in favor of slamming the door shut on anyone.  I don’t buy Guzdial’s assumption that this is a zero-sum game and that the only way we can have more women and URMs in CS is to have fewer white or Asian males. I think that there is plenty of room in the tent still for everyone who is interested and willing to work at learning the material.  We should not be rationing education, but providing enough education that everyone can get as much as they want.

In response to a different commenter, Guzdial wrote

We’re not talking about employees, Ian. We’re talking about seats at the table for students. If you get more women and under-represented minorities enthused about CS, there are still not enough seats at the table. If we’re going to allocate seats based on current ability, we have to get women and URM students to be better than privileged white boys. That’s a really high bar.

You may be under the misconception that computing is a meritocracy. It’s not. It’s not those with the most merit. It’s those with the most privilege.

It is almost certainly true the computer industry is not a meritocracy—but we should be trying to make it one, not rationing out education like butter in WW II. If there are not enough seats at the table, then buy a bigger table with more chairs! That will cost less in the long run than squabbling over who gets seated now.

2014 October 10

Reference list for women in science

Filed under: Uncategorized — gasstationwithoutpumps @ 21:45
Tags: , ,

Every year I spend part or all of one of the classes in my “how to be a grad student” course on talking about women in science—more specifically about women in computational fields.  For the last couple of years, I’ve been fortunate to have one of the more senior female grad students lead the discussion, but she plans to finish her thesis this year, so I’ve asked her to try to spread the expertise around so that someone else could take over next year.  She has put together a panel for the class consisting of herself, a female researcher in the field (and alumna of our program), a female faculty member from another department who has done published research into ways to increase female participation in computer science, and an advising staff member with yet another valuable view-point. All three of the other panel members are likely to be here for several years to come, and they could easily incorporate a grad student onto their panel, should some other grad student wish to step up in future.  So this seems like a good way to create an institutional continuity even as grad students come and go.

I am looking forward to how the panel works, since we’ve not had a panel before.  We also have 6 women and 7 men in the course, which is as close as we can come to gender parity with an odd number of students.  That should help with the discussions (though last year went ok, despite having an all-male incoming group of grad students).

Earlier this week I came across an excellent list of resources on women in tech fields on the Slow Searching blog.  I recognized a few of the articles as good ones and the rest look promising, though I’ve not had time to read them yet.  Even more recently on the same blog, there was a pointer to Project Implicit at Harvard, which lets people explore their unconscious biases.  I’ve not had time to follow up on Project Implicit either.  Perhaps if I get the grading done this weekend I’ll have a little time left to do some reading.

2014 September 21

Narrowing the gender gap in CS

Filed under: Uncategorized — gasstationwithoutpumps @ 13:41
Tags: , , ,

Today’s post collects a few drafts of pointers to articles about narrowing the gender gap in computational fields.  The first article is from CACM,  Computing’s Narrow Focus May Hinder Women’s Participation | News | Communications of the ACM:

In her position as a professor of computer science at Union College, Barr found contextualizing computer science classes led to an increase in female enrollment. “We said, ‘let’s show them that computer science can be useful by giving themes to the introductory CS courses, so students can see their relevance,’” she said. “For us, it’s been enormously successful. Ten years ago we taught the introductory course to 29 students, and 14% of them were women. This year there were over 200 students, and 39% of them were women.” Beyond college, Barr said, she’d also like to see “a bigger funnel into the corporate world and the tech industry, with people coming from many other majors. It doesn’t have to be just CS majors.”

The suggestion there is that providing interesting applications in the intro courses helps retain student interest, particularly among female students.  The  article seems to have struck a chord with some female computer scientists.  Here, for example, is a response from Katrin Becker’s blog:

A big part of what attracted me to computer science was what I could do with what I was learning. That, and that programming is largely about lists, organizing, and puzzles—all things that women often find appealing.

Personally, I think that well-designed intro courses that excite students about the possibilities of the field would serve to retain more men as well as more women, but it is certainly possible that the effect is stronger for some groups of students than for others.  Exactly what applications are chosen may make a difference also—picking applications that fit male stereotypes (car engine controllers and missile guidance systems?) may even be counter-productive in narrowing the gender gap.

Another possible explanation for why women make up such a small part of engineering and the “hard” sciences comes from an article in The Washington Post,  Catherine Rampell: Women should embrace the B’s in college to make more later – The Washington Post:

A message to the nation’s women: Stop trying to be straight-A students.

No, not because you might intimidate easily emasculated future husbands. Because, by focusing so much on grades, you might be limiting your earning and learning potential.

The college majors that tend to lead to the most profitable professions are also the stingiest about awarding A’s. Science departments grade, on a four-point scale, an average of 0.4 points lower than humanities departments, according to a 2010 analysis of national grading data by Stuart Rojstaczer and Christopher Healy. And two new research studies suggest that women might be abandoning these lucrative disciplines precisely because they’re terrified of getting B’s.

The observation is that women are more deterred from entering a field by getting low grades than men are—they found that women who got Bs and Cs in their intro courses changed majors to ones that graded more leniently, while men with low grades continued slogging along in their initially chosen major.  The data was from economics, not engineering, departments, and I don’t know whether the same behaviors apply. The article cites another study that suggests that the same behavior occurs in STEM fields:

Arcidiacono’s research, while preliminary, suggests that women might also value high grades more than men do and sort themselves into fields where grading curves are more lenient.

The suggested action is to advise women not to be intimidated by B grades.  I don’t know whether that has been attempted anywhere, but I have my doubts that just telling people not to be afraid of Bs is really going to change their strategies for maintaining their self images.  Catherine Rampell also makes a rather careless mistake in saying

Remember, on net, many more women enter college intending to major in STEM or economics than exit with a degree in those fields. If women were changing their majors because they discovered new intellectual appetites, you’d expect to see greater flows into STEM fields, too.

The mistake is in assuming that switching to and from STEM fields is equally easy.  In fact, the much larger set of required course and longer prerequisite chains make it much easier to switch out of STEM fields than into them.  Freshmen are advised to prepare for the most restrictive major they are interested in to keep their options open.  What seems to be happening is that women bail out of the tough majors at a higher level of performance than men do.

Of course, it is a mistake to think of “STEM” as monolithic entity. From The Shriver Report – 10 Reasons Why America Needs 10,000 More Girls in Computer Science:

2. Girls Are Already Making the Grade in Bio (Science)

Using AP test-taking as a measure of pipeline illustrates the true nature of STEM participation for girls. Female test-takers exceed or are close to parity with males in psychology, calculus, biology, and chemistry, but only account for 18 percent of AP computer science test takers. According to the National Center for Education Statistics, women already make up nearly 60 percent of degree recipients in biology, a whopping 85 percent in health professions, and around 50 percent in social sciences. In fact, 20 times as many girls took the AP biology test, as did AP computer science. The majority of women in ’STEM’ fields choose life sciences, so simply saying we need to increase the number of women in STEM is a mistake. Instead, we need to narrow the conversation to focus on computing and IT fields, where the shortfall is the largest.

Not only are women already over-represented in biology at the BS level, but biology has been over-producing PhDs for a couple of decades relative to the demand, so that jobs in biology research are very difficult to get and generally pay substantially less then other science and engineering fields.  There are some very high paying jobs in biomedical research, but the demand for them far exceeds the supply—the “postdoc holding tank” in biology is enormous.

I don’t have any action items coming out of these articles—I’ve already put together a freshman design course for the bioengineering majors that did hands-on, applied work providing applications for some low-level computer programming.  While I’ll continue to try to improve that course, there aren’t many lower-division courses taught by our department for majors (the others are bioethics and a no-prereq intro to biotechnology, both of which are dominated by non-majors).  The Baskin School of Engineering has just created a Computational Media department, which will take over the game design program (a predominantly male program) from CS, but which is expected to create some new computational media courses.  we’ll have to see whether these have any effect on the number of women in computational fields at our university.

2014 June 20

Male- and female-dominated fields

In Percentage of Bachelor’s degrees conferred to women, by major (1970-2012), Randal S. Olson posted the following image:

History of gender balance in different fields in college.

History of gender balance in different fields in college.

He makes the point that there is no “STEM” gender gap. Indeed, the sciences and math are doing fine on gender balance. There are, however, large gender gaps in the engineering and computer science on one side and health professions, public administration, education, and psychology on the other. The post with this graph talks mainly about the computer science and engineering gender imbalance, which is somewhat larger than the gender imbalance on the other side (particularly if you take into account that about 60% of bachelor’s degrees now go to women).  He talks about the other side of the gender imbalance in The double-edged sword of gender equality, though without shedding much more light on the subject.

Computer science is a particularly strange case, as it has seen more fluctuation both in raw numbers of students (data not shown here) and gender balance than any other field. Other fields have seen large shifts in gender balance, but they have generally been gradual and nearly monotonic—not reversing course in the early 1980s.  It seems to me that the biggest drops in the ratio of women in CS came at times when the overall number of students in CS was dropping (like after the dot-com bubble burst in the 2000).  When CS grew, the number of women grew faster than the number of men.  When CS shrunk, the number of women shrunk faster than the men.  Perhaps if CS education had had a steady growth, rather than the boom-and-bust cycles that have plagued it since the late 1970s, it would not have had such a mysterious rise and fall in proportion of women in the field. The boom-and-bust cycles are not driven by the real need for CS degrees, but by media hype about relatively small shortages or excesses of personnel.  I believe that the demand for CS degrees has been stabler than the supply (unlike most other fields, where the supply has been steady even as demand has fluctuated).  Sorry, I don’t have statistics handy for that, and I’m too lazy to spend hours going through the government databases trying to match up labor market information with degree information.

Fixing the gender gaps so that most fields can draw from the full population will be difficult. Getting more men into the health professions and education could probably be solved fairly easily by paying more—and there is no societal need for more psych and public administration majors than are currently being produced. But, because CS is already a high-paying field for which there is more demand than supply, the difficulty of getting more women to choose and complete the major is a societal problem that seems difficult to address.

Some people have suggested that eliminating H1B visas for importing temporary CS workers (who are predominantly male) might help.  I don’t think that the number of H1B visas is large enough to make that big a difference, though I support replacing the H1B visas with green cards.  If there aren’t enough American workers in a field, we should import the workers on a permanent basis, not with a temporary indentured-servitude system that just serves to export the technical expertise when the workers are sent home.

Some people have suggested that a big part of the problem is the disrespect women are treated with in some workplaces—which would help explain the “leaky pipeline” phenomenon, but not why female high-school and college students are not entering the field. Student choices in high school and college are shaped much more by peer pressure and mass media than by anything about the future workplaces—so the problem is one of changing the culture in high schools and colleges—a difficult task.  There has been some success at some smaller schools (like Harvey Mudd), but a large part of that has come from aggressive admissions policies that aim for gender balance in the field at admissions time—a route not open to public schools, who can’t apply large differences in admissions based on gender.

I’m currently in charge of a bioengineering program, whose graduating class was about 36% female (13/36), and a bioinformatics program that is so small that statistics are pretty meaningless (only 2 graduates a year, both male this year). I would like to see the number of women in majors increase, particularly in the concentrations that lead to higher paying jobs (the concentrations that are further from MCD biology).  We get a few students switching to the bioengineering from MCD biology, but not many, as those students don’t take the rigorous math and physics needed for the bioengineering degree—we really have to get our students in the first year.  I’m still trying to find ways to reach those students who would be good engineers, but don’t realize it until too late.

 

2014 March 11

Why few women in engineering?

Filed under: Uncategorized — gasstationwithoutpumps @ 11:33
Tags: , , ,
The Washington Post recently published an opinion piece by Catherine Rampell with a somewhat unusual, but plausible explanation why some fields end up with more men than women (as most of the engineering fields do). The theory is that women are more discouraged by a B in an entry-level course than men are (she cites some data from econ courses that support that theory, though it is only correlation, not necessarily causation).
Plenty has been written about whether hostility toward female students or a lack of female faculty members might be pushing women out of male-dominated majors such as computer science. Arcidiacono’s research, while preliminary, suggests that women might also value high grades more than men do and sort themselves into fields where grading curves are more lenient.
As parents and teachers we encourage children to pursue fields that they enjoy, that they are good at, and that can support them later in life. It may be that girls are getting the “that they are good at” message more strongly than boys are, or that enjoyment is more related to grades for girls. These habits of thought can become firmly set by the time students become men and women in college, so minor setbacks (like getting a B in an intro CS course) may have a larger effect on women than on men.
I’m a little wary of putting too much faith in this theory, though, as the author exhibits some naiveté:
But I fear that women are dropping out of fields such as math and computer science not because they’ve discovered passions elsewhere but because they fear delivering imperfection in the “hard” fields that they (and potential employers) genuinely love. Remember, on net, many more women enter college intending to major in STEM or economics than exit with a degree in those fields. If women were changing their majors because they discovered new intellectual appetites, you’d expect to see greater flows into STEM fields, too.
It is very difficult for students, male or female, to transfer into STEM majors late—the number of required courses and prerequisite chains are too long.  As long as the humanities majors have few, unchained requirements and STEM majors have many, chained requirements, the transfer out of STEM will be far larger than the transfer into STEM. Expecting equal flow in both directions is naive.
But there is, I believe, a greater proportional loss of women from STEM fields in college than men, and most of the interventions trying to reduce that loss have not been very effective.  (Harvey Mudd has had some success, attributed to various causes.) If the theory put forth by Rampell is valid, what interventions might be useful? Here are a few I thought of:
  • Higher grades in beginning classes. Engineering courses generally average 0.4 or 0.5 grade points lower than the massively inflated grades in humanities courses. I doubt, somehow, that many engineering faculty will be comfortable with the humanities approach of giving anyone who shows up an A, no matter how bad their work. So I don’t think that this idea has any merit.
  • Lower entry points. One of the things that Harvey Mudd did was to require every freshman to take CS and to introduce a lower-level CS course for those who did not have previous programming. By having some lower-level courses, students could get high grades in their first course without teachers having to water down existing classes or engage in grade inflation. By requiring the course of all students, students who avoided the subject for fear of not being able to compete are given a chance to discover an interest in the field (and, apparently, many women at Harvey Mudd do discover an interest in CS as a result of the required course).
  • Extra tutoring help for B students in entry-level courses. Almost all the “help” resources at the University seem to be aimed at getting students from failing to passing—but the students who are barely passing after massive help do not make good engineering majors, and are likely to fail out of the major later on. It would be far more productive to try to turn the Bs into As, retaining more women (and minorities) in the field. Of course, this means that the assistance has to be at a higher level than it often is now—the tutors need to know the material extremely well and be able to assist others to achieve that expertise.  Basic study skills and generic group help may be good for getting from failing to passing, but may not be enough to get from B to A.
  • More information to students about the feasibility and desirability of continuing with a B. This sort of encouragement probably has to happen one-on-one from highly trusted people (more likely peers than adults).

These ideas are definitely half-baked—I’m not even fully convinced that the theory behind them is valid, much less that they would have the desired effect. I welcome comments and suggestions from my readers.

Next Page »

%d bloggers like this: