Gas station without pumps

2017 May 19

Baking in inequity in funding

Filed under: Uncategorized — gasstationwithoutpumps @ 08:11
Tags: ,

UCOP (University of California Office of the President) and the UC Regents recently decided to limit out-of-state students at UC campuses.  But they did not do so uniformly across all campuses.  They decided to let UCB, UCLA, UCSD, and UCI have more out-of-state students than the other campuses and to keep the extra tuition collected.

This continues a pattern that has been in place at least as long as the 31 years I’ve been at UCSC of ensuring that UCB and UCLA get more funding per student than the younger campuses.  I’ve seen no evidence that UCOP or the UC Regents have any intention of ever treating the campuses equitably.  Even when they are strongly pushed to do so, they find ways to weasel out and bake in extra money for UCB and UCLA (like the “rebenching” initiative, which was touted as redressing imbalances, but ended up making them worse).

2017 May 18

Midterm quiz doesn’t tell me much new

Filed under: Circuits course — gasstationwithoutpumps @ 09:53
Tags: , ,

I don’t usually give exams in my courses any more, because I’m more interested in what students can do when they have time and resources than what they can do on toy problems under resource limitations.  But if students don’t do the homework, then they don’t learn the material, so I threaten each class that if too many students don’t turn in the homework, I’ll have to add a quiz (worth as much as one of the lab reports, each of which is equal to all the homework) to the course.

This quarter I had to follow through on that threat, because 12% of the class had turned in half or less of the homework (and by that, I don’t mean answered half the questions—I mean turned in nothing at all for half the assignments).  A quarter of the class had not turned in 25% or more of the assignments.

I gave the quiz yesterday, with 6 easy questions that only tested the very basic material: single-pole RC filters (passive and active) and negative-feedback amplifiers.  I told students ahead of time (and on the exam) that they could use the Bode approximations (the straight-line approximations to the gain of the RC filters) and we even reviewed them in class last week.  There were 60 points possible on the test, and none of the questions were design questions—they were almost all of the form “what is the corner frequency?” or “what is the gain of this circuit?”.

There are a small number of students in the class whose probity I have reason to question, so I took steps to reduce cheating that I would not normally bother with: I made up two versions of the test (same schematics, but different component values) and alternated them in the piles passed along each row.  I also had the students sit in different rows from usual, reversing front and back of the room, with the front row reserved for latecomers. I’ve noticed a high correlation between good homework grades and people being on-time and in the first two rows, so I had those students sit in the back row, where no one would be able to copy from them.

I normally figure that a test is appropriately long if an expert can do it in about a quarter of the time allotted.  So I made up the keys for the test while the students were taking it.  Working through one form with the Bode approximations took about 5 minutes.  Doing exact computation with the formulas for series and parallel impedances and complex numbers using only real-number arithmetic on my calculator extended that by another 15 minutes.  The students had 63 minutes, so the exam was too easy if the students used the Bode approximations (as they were told) but a little too hard if they worked just from the fundamentals of complex impedance and negative-feedback amplifiers.  As a consequence, I decided to give bonus points for exact computations of the gains that didn’t use the Bode approximations, though the class was not informed of this bonus, because I didn’t want them to waste time on the tiny bonus.  (The differences in answers were small, because I had deliberately asked for gains only at points well away from the corner frequency, so that the Bode approximations would be good.)

Even if students really didn’t understand complex impedance or RC filters, 39 of the 60 points could be earned with just DC analysis of the negative-feedback amplifiers and knowing that capacitors don’t conduct DC.   So I was hoping that students would do better on these very easy questions than they did on the harder design questions of the homework.  As a confirmed pessimist, though, I expected that students would show almost exactly the same distribution on the test that they showed on the homework, with the middle of the class being around 20 out of 60 points and showing serious misunderstandings of almost everything, with a long tail out to one or two students who would get almost everything right.  I also expected that the correlation between the homework scores and the quiz scores would be high.

So what happened?  First, I saw no evidence of any cheating (not that I had expected any), so that is one worry removed.  Second, my pessimistic assumption that students really were not learning stuff that they had done many times in homework and in lab was confirmed:

Here is a stem-and-leaf plot of the scores:

OO: 3
05: 6889
10: 011112444444
15: 555667777899
20: 00111112223344
25: 677999
30: 12224
35: 5678
40: 00444
45: 67
50: 01
55: 
60: 2

The median is indeed 21 out of 60, as I feared. At least no one got a zero, though the scores at bottom indicated complete failure to apply the basics of the course.

Most students could compute a corner frequency from a resistor and capacitor, but few had any idea what to do with that corner frequency. Many students could compute the DC gain of a non-inverting amplifier, though many could not then apply this knowledge to the DC gain of an active filter (which only requires replacing the capacitors with open circuits). A lot of students forgot the “+1” in the formula of the gain for the non-inverting amplifier.

Inverting amplifiers were even less understood than non-inverting ones, with students forgetting the minus sign or trying to use the formula for non-inverting amplifiers.

A lot of student answers failed simple sanity checks (students were having passive RC filters with gain greater than 1, for example).

Very few students used the Bode approximations correctly, and many tried the exact solution but either couldn’t set up the formulas correctly or couldn’t figure out how to use their calculators, often getting numbers that were way, way off.  Others seem to have ignored the complex numbers and treat x+jy as if it were x+y.

One disturbing result was how many students failed to recognize or understand a circuit that they have designed in three different labs: a voltage divider and unity-gain buffer to generate Vref, combined with a non-inverting amplifier. I asked for the output voltage as a function of the input voltage (both clearly labeled on the schematic). This was intended to be almost free points for them, since they had used that circuit so many times, and the formula they needed was one of the few formulas on the study sheet: \frac{V_{out}-V_{ref}}{V_{in}-V_{ref}} = 1 + Z_{f}/Z_{i} . The frequent failure to be able to fill in the blanks of this formula for a circuit that they have used several times in design makes me question whether the students are actually learning anything in the course, or if they are simply copying designs from other students without understanding a thing. (Note: the extremely poor performance and group-think duplication of ludicrously wrong answers on pre-lab homework this year has also lead me to the same question.)

Did the quiz tell me anything that the homework had not already told me? Here is the scatter diagram:

Pearson’s r correlation is 0.539 and Kendall’s tau is 0.306, so the homework and quiz scores are highly correlated. There are a few outliers: a diligent student who bombed the quiz and a student who has turned in few of the homeworks who actually understands at least the easy material. The points have a small amount of noise added, so that duplicate points are visible.

The high correlation between the quiz and the homework mostly confirmed my prior belief that the quiz would not tell me much that is new, and that the homework grades were pretty reflective of what students had learned. I will want to talk with a few of the most extreme outliers, to find out what happened (why were students who mostly understood the material blowing off the homework? and why did diligent students who had been doing moderately well on the homework bomb the quiz—is there undiagnosed test anxiety that should be getting accommodations, for example?).

Most of the points that were earned were from students randomly plugging numbers into a memorized formula and (perhaps accidentally) having chosen the right formula and the right numbers. Only a few students showed real understanding of what they were doing, and only one student saw the quiz as the trivial exercise it was intended to be.

It seems that the hands-on active learning that I have been so enthusiastic about is not working any better at getting students to learn the basics than the traditional (and much cheaper) droning lecture that EE uses. I’m not in complete despair about the course, as there is some evidence that students have picked up some lab skills (using oscilloscopes, multimeters, soldering irons, …) and some writing skills (though many are still not writing at a college level). But I’m trying to teach the students to be engineers, not technicians, so I was aiming at them understanding how to design and debug things, not just implementing other people’s designs. Picking up lab skills is not enough for the course.

I need help. How do I reach the lower half of the class? How do I get them to think about simple electronics instead of randomly applying half-remembered formulas? We’ve only got 3 weeks left—I don’t know how much I can salvage for this cohort, but I certainly would like better outcomes next year.

2017 May 16

New problem in class-D lab

Filed under: Circuits course — gasstationwithoutpumps @ 22:37
Tags: , , ,

Today was the last day for the class-D power amplifier lab, and the students had a problem that we’d never encountered before—the breadboards kept squirting the nFETs out of the breadboard (sometimes the landed several inches away).

We were using the same nFETs as last year,NTD4858N, which comes in a TO-251-3 Stub Leads (which they call IPak) package.  The problem is that this year’s breadboards have their contact springs deeper than in previous years, so the stub leads barely reach them.  I don’t know whether the breadboards were ordered from the supplier I had found (http://www.meerkatsystems.net/html/10000023.html) or whether they substituted one from one of their favorite suppliers.  It would be good to know, as this year’s breadboards seem to be inferior to previous year’s.

Next year, I think I’ll specify the nFET to be PSMN022-30PL,127, which comes in a TO-220 package and sits more firmly in the breadboard.

Tomorrow I’m giving a quiz in class—something I try to avoid doing, but so many students have not been showing up for class nor turning in the required pre-lab homework that I was compelled to assess them some other way.  My guess is that the grade distribution will be similar to the distribution for the sum of the homework so far (out of 50 possible points):

 1.0  1
 1.5  2
 2.5  1
 3.0  1
 3.5  3
 4.5  1
 5.0  1
 5.5  1
 6.0  1
 7.0  3
 7.5  2
 8.5  5
 9.0  1
 9.5  4
10.0  4
11.0  1
11.5  2
12.0  3
12.5  4
13.0  1
14.0  1
14.5  1
15.0  1
16.0  3
16.5  2
17.0  2
19.0  2
19.5  1
20.0  1
20.5  1
21.5  2
24.0  1
25.5  1
26.0  1
27.0  1
28.0  1
28.5  1
30.5  1
31.5  1
36.5  1

I further conjecture that there will be a very high correlation of scores (so I won’t really learn all that much about the students). But I’m prepared to be surprised—I made the quiz deliberately fairly easy, so it is possible that students who have struggled with the design problems of the homework may be able to do the quiz.

2017 April 30

Twenty-second weight progress report

Filed under: Uncategorized — gasstationwithoutpumps @ 14:20
Tags: , , , , , ,

This post is yet another weight progress report, continuing the previous one, this being the 22nd since I started in January 2015.

Although I had a few days in my target range in the middle of March, my weight spiked after that and has not come back down.

 

The longer-term trend is a bit disheartening, because it suggests that even if I'm fairly diligent about my current diet, I'm likely to be back where I started within four years.

The longer-term trend is a bit disheartening, because it suggests that even if I’m fairly diligent about my current diet, I’m likely to be back where I started within four years.

The weight spike at the beginning of April was the result of my trip to Ashland for the Oregon Shakespeare Festival.  I ate too much and exercised too little on the trip.  I don’t think that this is what people have in mind when they say that “travel is broadening.”

My goal for Spring quarter is still to get my weight back down to 158 lbs, another 6-pound loss, which seems a bit unlikely in the remaining 6 weeks, as I have not even been able to hold steady at a my mid-March weight, much less lose.

My exercise for March and April 2017 was about 4.58 miles a day of bicycling, with a slightly higher pace going up hill than I usually use, though probably not enough difference to constitute more exercise, just somewhat faster exercise.

2017 April 29

Santa Cruz Mini Maker Faire 2017

Today I spent about 10 hours on the 2017 Santa Cruz Mini Maker Faire.  The hours for the Faire were 10–5, but I spent some time setting up and tearing down afterwards, so I left the house around 8:30 a.m. and had the bike trailer unpacked and everything back in the house by about 6:30 p.m.  I figure that I spent only about 10 hours earlier on setup for this Faire: applying for the Faire, setting out all the displays and testing them at home, preparing new blurbs for my book and blog, making table signs telling people how to use the interactive parts of the display, blogging about the Faire, and doing load-in last night.  That is a lot less than last year, as I was able to reuse a lot of the design from last year.

Here is the table display I ended up with:

The bare corner at the front left was reserved for the students in my freshman design course who were coming to display their muscle-controlled robot arm, but they decided to set up in back (you can see one of the lead students in the background).

I had four interactive displays (from left to right):

  • A pair of function generators and an oscilloscope showing Lissajous figures.  I changed this from last year, as I did not use the FG085 function generator this year, but one of the function generators from the Analog Discovery 2.  I still used the Elenco FG500, despite the very low quality of its waveforms, because it has a knob that is easy for kids to turn, and is easy to reset if they mess it up (unlike the jamming buttons on the FG085).  I did not use the second function generator on the Analog Discovery 2, as I did not want kids playing with just a software interface (and a rather complicated one at that).  It might even be worthwhile for me to build a simple audio sine-wave oscillator with a single big knob over the summer, so that I can have something for kids to play with that is fairly robust and that can’t be easily set into a weird state.  I could even do two, just for Lissajous figures, though having one fixed oscillator worked well this time.  I had the Analog Discovery 2 oscilloscope showing on the laptop next to the old Kikusui CRT oscilloscope, showing both the waveforms and the XY plot, so that I could explain to adults what was happening with the Lissajous figures and about the differences between classic oscilloscopes and modern USB-based ones.
    A lot of people asked me about the Analog Discovery 2, which I was very enthusiastic about—Digilent should be giving me a commission! (They aren’t, although I’m sure I’m responsible for at least half a dozen sales for them, and a lot more if we go ahead with our plan to use them in place of bench equipment in my class next year.)
  • In front of the laptop showing the Lissajous figures, I had a standalone optical pulse monitor using the log-transimpedance amplifier and the TFT LCD display.  Using the log-transimpedance amplifier worked well, as did using a lego brick to block light to the sides and back of the phototransistor.  A lot of people have trouble holding their hands still enough to get good readings (particularly children), so it would be good to have some sort of clip instead of resting a finger over the phototransistor.  I’ve tried making clips in the past, but I’m not good at mechanical design, and I’ve always ended up with either a clamp that is too tight (cutting off circulation and getting no reading) or too loose (falling off).  Ideally, I’d want a pressure between systolic and diastolic pressure, so about 12kPa (90mmHg).  People did like the use of Lego as a support, though—it provided a familiar element in the strange world of electronics.
  • To the right of the pulse monitor was a pressure sensor.  I had a mechanical gauge and the electronic sensor both connected to a piece of soft silicone tubing taped to the table top.  Kids pressed on the tubing to get an increase in pressure, visible on the gauge (about 20–60 mmHg) and on graph PteroDAQ was running on the little laptop (which we refer to as the “Barbie” laptop, because of its color and small size).  I explained to kids that the tubing was like the tubing stretched across roads sometimes to count cars, with a pressure sensor that recorded each pulse as wheels compressed the tubing.  (For some of the old-timers, I reminded them of when gas stations used to use a similar system.)
    PteroDAQ worked well for this setup, running all day at 20 samples per second without a glitch.  The only problem was occasional display sleep from the laptop, fixable by touching the touch pad.
  • At the far right end of the table, I had a phototransistor which kids could shadow with their hands, with the result visible on another channel on PteroDAQ.  This was a last-minute change, as I was getting very unreliable results from the capacitive touch sensor when I tested it out last night.  The capacitive touch sensor worked fine at my house, but in the kindergarten room at Gateway I has a different electrical environment, and it would not work unless I grounded myself. Rather than fuss with the touch sensor, I made a new table sign and put in a light sensor instead.
    I might want to experiment this summer with different ways of making touch plates—trying to get one that doesn’t rely on the toucher being grounded.  My initial thought is that if I have two conductors that are not too close together, but which would both be close to a finger if the touch plate is touched, then I may be able to get more reliable sensing.  I could try some wire-and-tape prototypes and maybe make PC boards with different conductor layouts.  (OSH Park‘s pricing scheme would be good for such tiny boards).

I also had my laptop displaying my book; some quarter-page blurbs with URLs for my book, PteroDAQ, and this blog; my 20-LED strobe; my desk lamp; and a PanaVise displaying one of the amplifier prototyping boards.

I’d like to think of a more exciting project for kids to play with next year—perhaps something I could build over the summer.  Readers, any suggestions?

In addition to my display, some of the freshmen from my freshman design seminar class demonstrated their EMG-controlled robot arm (which uses the MeArm kit):

The students built a MeArm from a kit, then programmed a Teensy board to respond to muscle signals amplified by amplifiers designed by other students in the class. The combined project had two channels: one for controlling the forward-backward position of the arm (using the biceps), the other for controlling the gripper (using muscles in the forearm). With practice, people could pick up a light object with the robot arm.

The scheduling of the Mini Maker Faire was not ideal this year, as it conflicted with the Tech Challenge, Santa Cruz County Math contest, the California Invention Convention, and the Gem and Mineral Show, all of which draw from the same audience as the Mini Maker Faire.

The Faire seemed to be reasonably well attended (rather slow for the first hour and half, but picking up considerably in the afternoon).  There was plenty of room for more exhibitors, so I think that organizers need to do a bit more outreach to encourage people to apply.  It would probably help if they were quicker responding to applicants (it took them over three months to respond to my application, and then only after I nudged them).

Some obvious holes in the lineup: The Museum of Art and History did not have a display, but I saw Nina Simons there, and she said that MAH definitely plans to do it next year, but the Abbott Square renovation is taking up all their time this year.   The fashionTEENS fashion show was April 21, just over a week ago, so it would have been good to get some of them to show their fashions again: either on mannequins or as a mini-show on the stage.  It might be good to get some of Santa Cruz’s luthiers or fine woodworkers to show—we have a lot of top-notch ones, and many do show stuff at Open Studios. The only displays from UCSC were mine and the Formula Slug electric race car team.

Of the local fab labs, Cabrillo College Fab Lab and Idea Fab Labs were present, but The Fábrica and the Bike Church were not.  I thought that Cabrillo did a great job of exhibiting, but Idea Fab Labs was a little too static—only the sand table was interactive.

It might be good to have Zun Zun present their Basura Batucada show (entirely on instruments made from recycled materials) and have a booth on making such instruments.  It might be hard to get Zun Zun to volunteer, but they used to be very cheap to hire (I hired them to give a show at my son’s kindergarten class 15 years ago—they were very cheap then, but I don’t know what their prices are now).

One problem my wife noted was the lack of signs on the outside of classrooms, so that people would know what was inside.  The tiny signs that the Faire provided (I think—I didn’t get one) were too small to be of any use.  It may be enough to tell makers to bring a poster-sized sign to mount.  I had my cloth banner behind my table, but a lot of the displays were hard to identify.  Instructions or information mounted on tables would also have been good—again these would have to be provided by the makers.  I did not see people carrying maps this year—they can also be helpful in getting people to find things that were tucked away in odd corners.  Not many people made it back to the second kindergarten room where FabMo and the Lace Museum activities were.

Update 2017 May 1: It turns out that there were some things I missed at the Faire.  The principal of Gateway sent me email:

… we did have 4 of the Fashion Teens exhibit their creations on the stage at 11:30—might be cool to have them put those on mannequins and have a booth next year. Also we had two more UCSC projects—Jim Whitehead and the Generative Art Studio, and Project AWEsome from the School of Engineering. We would LOVE to have more UCSC-related projects …

 

Next Page »

Create a free website or blog at WordPress.com.

%d bloggers like this: