Gas station without pumps

2016 January 7

Counting pages

Filed under: Circuits course — gasstationwithoutpumps @ 20:30
Tags: , ,

I just read in Dan Graur’s blog, his post about how publishers report the sizes of his textbooks:

On the Numbering of Pages in Textbooks

American students are apparently afraid of books with too many pages. The solution that publishers have came up with to is to number different sections of the book separately.

Thus my previous book, the second edition of Fundamentals of Molecular Evolution was listed as xiv + 481 pp. That is, 14 pages of front material (title, acknowledgements, dedication) plus 481 pages of text. This was a significant increase in pages from the first edition, which was listed as xv + 284 pp.

My newest book, Molecular and Genome Evolution, which was published with the same publishing house, is listed as xvii + 612 pp + 54 LC + 34 I, in other words 17 pages of front material, 612 pages of text, 54 pages of references, and 34 pages of index. It seems that 612 is significantly less terrifying than 690 (or 707 if one includes everything in the book).  

Under this system, the current draft of my book is xxiv + 270 pp + 6 LC + 4 I—not counting the colophon, which is after the index.  Should the appendix have been in the 270 pp, where I put it, or in the “LC” count? Should the blank pages that exist only so that chapters start on a right-hand page be counted, as I did, or not?

Obviously, my book is much lighter weight than Prof. Graur’s (if weight means anything in an e-book-only publication), and I clearly need to beef up the index (though maybe not to four times the current length, which is what it would take to be comparable to his index/text ratio).

But 54 pages of references seems excessive for a textbook—even one with 612 content pages. No student is going to look up even 1% of those references. That depth of references is more appropriate for review article or a research monograph than for a textbook. Of course, many scientists don’t really distinguish between research monographs and textbooks, so perhaps it really is a research monograph, in which case the level of citation seems appropriate.

Perhaps Prof. Graur’s book, probably aimed at grad students or postdocs, is not typical of books aimed at college freshmen and sophomores. Looking at a textbook I happen to have on the floor by my desk, Matter and Interactions, which I haven’t put away since teaching/learning physics from it 3 years ago, I see xxiv + 1080 pp + 19 I, not counting the endpapers, which add another 3 pages of text (useful reference material).  This book seems to have no references—not at the end, not in each chapter, and not even occasional pointers to more information for curious readers. The indexing rate is 1.76%,which is only slightly more than my 1.48%, so I may not be as far off the mark in the amount of indexing I’ve done as I feared.

2015 December 26

Syllabi for splitting Applied Electronics into two courses

In order to split the Applied Electronics for Bioengineers course into two courses, as I suggested in Considering splitting Applied Electronics course, I need to fill out course approval forms to get the courses approved by the Committee on Educational Policy.  They’ve changed the forms this year, so that there are now three documents needed:

If I were requesting a general-education code for the course, I would also have to fill out one of the thirteen general-education forms (corresponding to the 13 possible general-education codes for a course at UCSC), listed at the bottom of the supplemental sheet.

The supplemental sheet was simplified this year, by pushing all the general-education forms out to separate forms, but the requirement for a course syllabus is new.  Basically, the supplemental sheet asks more or less the same questions as before, rephrased to “where on the course syllabus …?”  The “learning outcomes” question is new, as it reflects a relatively new bureaucratic approach to curriculum design.  The learning outcomes make a lot more sense at the course level than at the degree level, where the administration has been pushing for them.

Here are my first more-or-less complete drafts of my sample syllabi for the split course:

The split course is a pair of 4-credit courses, representing a total time of  about 250 hours (240–263 hours), 140 of which are contact hours (3.5 hours of lecture and 3.5 hours of lab a week).  I’m thinking in terms of MWF lectures (70 minutes each) and TTh labs (105 minutes each).  That should be easier to schedule than the 7-unit BME 101/L these courses will replace, which takes about 220 hours (210–232 hours), 95 of which are contact hours (3.5 hours of lecture and 6 hours of lab a week). The increased contact hours should result in students learning more, as many of our students are not very efficient at learning on their own.

One thing I’ll have to decide is whether to require all bioengineering majors to take both courses, or whether BME 51A is enough for the biomolecular concentration. For the bioelectronics and assistive technology: motor concentrations, both parts are needed both for the content and for the lab experience.  But for the biomolecular and assistive technology: cognitive/perceptual concentrations, the courses are mainly there to teach engineering design practices.  The assistive technology: cognitive/perceptual concentration relies on software courses for design content, and so BME 51A is probably enough for them, but there are very few design courses for the biomolecular concentration, as biomolecular lab work is very slow, and a full-year capstone sequence is barely enough for one iteration of one prototype.

2015 December 22

Small updates to book

Filed under: Circuits course — gasstationwithoutpumps @ 13:56
Tags: , ,

I released a couple more small updates to my book today:

  • revised Chapter 25 (Electrodes) and electrode lab
  • small additions to loudspeaker lab to remove several TODO comments
  • cleaned up many (but not all) overfull-box LaTeX errors

I’ll try to get Chapter 27 (EKGs) and the EKG lab redone by the end of 2015, completing the rewrite that I started in June 2015.  After finishing this pass, I’ll raise the minimum price on the book (probably to $3.99 from $2.99), though the book still won’t be “finished”—I’ll still have 46 TODO comments to resolve.

If anyone is waiting for me to finish the book before buying it, remember that as long as I’m publishing it with leanpub, buying a copy entitles you to all updates for free, so you might as well get it now, before I raise the price.

2015 December 21

New tools and parts list for applied electronics

Filed under: Circuits course — gasstationwithoutpumps @ 16:41
Tags: , ,

I just finished making a new parts and tools list for the Spring 2016 offering of my applied electronics course.  The class doesn’t start until March, but I’m getting the parts list in early this year, so that the staff have sufficient time to buy and repackage everything before classes start.  I really want the parts and tools to be available on the first lab day (29 March 2016) this time.

I’ve spent a lot of time finding appropriate tools and parts at low cost, but the UCSC purchasing system may make it difficult, as they don’t allow the use of major sites like Amazon and AliExpress, which are often the only way to get low-cost items from China without doubling the price.

2015 December 14

Sabbatical leave application 2016

Filed under: Circuits course — gasstationwithoutpumps @ 14:33
Tags: , ,

I’ve got to write an application for sabbatical leave and submit it before 2016 March 11.   My plans are to take sabbatical leave for fall quarters at ⅔ or 5/9 pay for the next five years, to gradually drain the accumulated sabbatical leave credits, rather than spending them all at once getting two quarters off at full pay.  If I do that, I can retire after Winter 2021 with one unused sabbatical credit (which is a little left as you can get, as you have to return to the university for at least as long as the duration of your last sabbatical).

It is better for the department for me to take sabbatical at partial pay, as the savings in salary is returned to the department as Temporary Academic Staffing (TAS) funds, which can be used for hiring lecturers.  If I took salary at full pay, the department would get nothing, and if I took leave without pay, they’d get my full salary—at ⅔ salary they get  the remaining ⅓, which should be enough to hire 1.5 lecturers to replace me for that quarter (and cover the 1.4 courses that I’d not be teaching).

The sabbatical leave form is only for the Fall 2016 leave and asks a lot of questions, some of which are difficult to answer briefly.

The application form shall be accompanied by a statement providing in detail the following information:

a. A brief history of the project, from inception through progress to date and projection as to completion date. This history shall include a description of the applicant’s preparation and any significant contributions already made in the field of activity with which the project is concerned.

I’m planning to do two things in Summer and Fall 2016: work on my textbook and try to find a bioelectronics project to design, preferably in collaboration with a doctor at UCSF.  Unfortunately, I don’t know any one at UCSF who has a problem that would be interesting for me to work on, and I’m not very good at the networking needed to find such collaborators. I’m also more interested in open hardware than in proprietary development, and that could be a bad mismatch for the UC emphasis on making money off of research developments in the biomedical field.

Even if I’m vague in the request about starting a bioelectronics project, giving a brief history of the textbook development will take some thought—I can’t very well give them the 373 blog posts I’ve written about the course, as they probably want only one or two paragraphs.  I suppose I should mention the times I’ve taught the course, the evolution of the lab handouts into the current draft of the book, and the need for revision based on changing the level and pace of the course next year. The course will be moved from upper division (junior/senior) to lower division (freshman/sophomore), and split into two quarters (2 4-unit courses, replacing the current 5+2-unit course).  The move to lower division means reducing the prerequisites (I’ll still have differential calculus as a prereq, but not calculus-based physics), which in turns means beefing up the background in the text and in the class, to cover the physics that the students won’t have had.

The book may be publishable after the Fall 2016 leave, but I’ll probably want to try using it at the slower pace during Winter and Spring 2017, and revise it Summer and Fall 2017, based on that experience.  I’m still not sure when the project will be “completed”.  There are many milestones along the way: used in the course (done Spring 2015), released to the public (done in draft form starting August 2015), all the “to-do” notes in the text done (maybe never—I keep finding more that needs to be improved), adopted for teaching by someone other than me, available on paper (maybe never—the cost of printing is high relative to PDF distribution, but see Textbook should be on paper), available in EPUB and MOBI formats (maybe never—those formats are awful for math and for scientific graphics), freezing an edition and getting an ISBN, distributing through a professional publisher (maybe never—the textbook publishers take way too big a share of too high a price, providing little in return except their name).

b. Significance of the project as a contribution to knowledge, to art, to a particular profession; or as an expected contribution to the applicant’s increased effectiveness as a teacher and scholar.

I could find no intro electronics textbook that was suitable for bioengineering students at the level I wanted to teach.  Everything that had sufficient design content assumed that the students had already had at least a circuits course and often several low-level analog electronics courses. The books that assumed no prior electronics experience all ended up being “cookbooks”, which had students building things that others designed, or “physics” books, doing demos to illustrate concepts, with no design work in either case. There seems to be a real need for books that get students to design simple electronics without years of preliminary drudgery.

c. Name(s) of the location(s) or institution(s) where the project will be carried on, and the names of authorities, if any, with whom it will be conducted.

Textbook writing will happen at home.  Finding a project to collaborate on with someone else is less definite—I’ll probably try to find collaborators at UCSF, though that will not be easy to arrange, as I don’t want to move to San Francisco, but only visit for a few days at a time every couple of weeks. Stanford would be closer, but the doctors at the Stanford medical school have easy access to Stanford engineering faculty, so finding a fruitful collaboration is likely to be harder.

d. Assurances of cooperation, or authorization to conduct the project, received from individuals, institutions, or agencies.

No authorization is needed for the textbook project, and nothing has been set up yet for doing a collaboration.  It may be that I’ll spend much of the first sabbatical just finding people and setting up mechanisms for later collaborations.

e. Description of all financial support expected during the sabbatical leave, including any fellowship, grant, government-sponsored exchange lectureship, or payment for contract research. (See also APM-740-18 and 740-19.)

No external support expected. I may do small amounts of consulting (well less than the 1-day-a-week limit), if the opportunity arises.

f. Description of University service which will be provided if the applicant proposes to substitute significant University service for some or all of the teaching/instructional requirements of a sabbatical leave in residence (See APM 740-8-b & CAPM 900.700-G)

Not doing a leave in residence, but I may still do some service work at UCSC while on leave, like giving the “Speaking Loudly” workshop for Women in Science and Engineering or helping the advising office with new-student orientation.

Next Page »

The Rubric Theme. Create a free website or blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 335 other followers

%d bloggers like this: