Gas station without pumps

2019 January 5

OpenScope MZ review

During the CyberWeek sales I bought myself an OpenScope MZ USB scope from Digilent, to see how it compared with the Analog Discovery 2, which I use frequently.  I particularly wanted to see whether I could recommend it as a low-cost alternative ($89 list) for the AD2 ($279 list, but $179 with academic discount).

I’ve not had a chance to do much testing yet, but the short answer is that I would recommend saving up for the Analog Discovery 2—the OpenScope MZ is nowhere near being a professional instrument, but the AD2 is close.

The first thing I tested was the function generator.  The OpenScope MZ does not have a real DAC, but uses digital output pins and a resistor ladder to generate analog voltages.  The result is a “DAC” that is non-monotonic.  The non-monotonicity can be observed by generating a sawtooth waveform and observing the result with an Analog Discovery 2.

The non-monotonicity is worst when the DAC switches from 0x1ff to 0x200 (from 511 to 512 out of 1024 steps). This was a 3Vpp sawtooth at 10Hz. The OpenScope MZ also has a much larger offset than the AD2.

To get clean measurements, I set the AD2 to average 100 traces.  I also did 16-fold oversampling, so that I could get good time resolution while recording the whole period.

The steps are not of uniform duration, but don’t seem to be a simple pattern of single or double clock pulses:

The step durations vary here from 64µs to 136µs in this small sample, but with 1024 steps in 0.1s, I would expect 97.66µs.

The step heights are not completely consistent either, but seem to average to roughly the right value:

The step size should be 3V/1024=2.93mV, but in this range the average step size is a little high. (but the first step at the bottom left is too small).  The variable duration of the steps is also very visible here.

The speed limitations of the amplifier for the OpenScope’s function generator are also quite clear:

There seems to be a 12V/µs slew rate limitation, and the large step at the end of the sawtooth has a 258ns fall time. By way of contrast, the AD2 has about a 40ns fall time for the same 10Hz ramp up and a slew rate of about 120V/µs.

I found the Analog Discovery 2 falling edge rather interesting—the stepwise descent may be an artifact of recording the waveform with the same instrument used for generating it (so that the oversampling does not work correctly), but it might also indicate that the ramp edge is digitally pre-filtered to keep it from overshooting.

1 Comment »

  1. […] the review in OpenScope MZ review, I investigated using the OpenScope MZ for impedance analysis (used in both the loudspeaker lab and […]

    Pingback by OpenScope MZ review: Bode plot | Gas station without pumps — 2019 January 6 @ 14:47 | Reply

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: