Gas station without pumps

2017 April 29

Santa Cruz Mini Maker Faire 2017

Today I spent about 10 hours on the 2017 Santa Cruz Mini Maker Faire.  The hours for the Faire were 10–5, but I spent some time setting up and tearing down afterwards, so I left the house around 8:30 a.m. and had the bike trailer unpacked and everything back in the house by about 6:30 p.m.  I figure that I spent only about 10 hours earlier on setup for this Faire: applying for the Faire, setting out all the displays and testing them at home, preparing new blurbs for my book and blog, making table signs telling people how to use the interactive parts of the display, blogging about the Faire, and doing load-in last night.  That is a lot less than last year, as I was able to reuse a lot of the design from last year.

Here is the table display I ended up with:

The bare corner at the front left was reserved for the students in my freshman design course who were coming to display their muscle-controlled robot arm, but they decided to set up in back (you can see one of the lead students in the background).

I had four interactive displays (from left to right):

  • A pair of function generators and an oscilloscope showing Lissajous figures.  I changed this from last year, as I did not use the FG085 function generator this year, but one of the function generators from the Analog Discovery 2.  I still used the Elenco FG500, despite the very low quality of its waveforms, because it has a knob that is easy for kids to turn, and is easy to reset if they mess it up (unlike the jamming buttons on the FG085).  I did not use the second function generator on the Analog Discovery 2, as I did not want kids playing with just a software interface (and a rather complicated one at that).  It might even be worthwhile for me to build a simple audio sine-wave oscillator with a single big knob over the summer, so that I can have something for kids to play with that is fairly robust and that can’t be easily set into a weird state.  I could even do two, just for Lissajous figures, though having one fixed oscillator worked well this time.  I had the Analog Discovery 2 oscilloscope showing on the laptop next to the old Kikusui CRT oscilloscope, showing both the waveforms and the XY plot, so that I could explain to adults what was happening with the Lissajous figures and about the differences between classic oscilloscopes and modern USB-based ones.
    A lot of people asked me about the Analog Discovery 2, which I was very enthusiastic about—Digilent should be giving me a commission! (They aren’t, although I’m sure I’m responsible for at least half a dozen sales for them, and a lot more if we go ahead with our plan to use them in place of bench equipment in my class next year.)
  • In front of the laptop showing the Lissajous figures, I had a standalone optical pulse monitor using the log-transimpedance amplifier and the TFT LCD display.  Using the log-transimpedance amplifier worked well, as did using a lego brick to block light to the sides and back of the phototransistor.  A lot of people have trouble holding their hands still enough to get good readings (particularly children), so it would be good to have some sort of clip instead of resting a finger over the phototransistor.  I’ve tried making clips in the past, but I’m not good at mechanical design, and I’ve always ended up with either a clamp that is too tight (cutting off circulation and getting no reading) or too loose (falling off).  Ideally, I’d want a pressure between systolic and diastolic pressure, so about 12kPa (90mmHg).  People did like the use of Lego as a support, though—it provided a familiar element in the strange world of electronics.
  • To the right of the pulse monitor was a pressure sensor.  I had a mechanical gauge and the electronic sensor both connected to a piece of soft silicone tubing taped to the table top.  Kids pressed on the tubing to get an increase in pressure, visible on the gauge (about 20–60 mmHg) and on graph PteroDAQ was running on the little laptop (which we refer to as the “Barbie” laptop, because of its color and small size).  I explained to kids that the tubing was like the tubing stretched across roads sometimes to count cars, with a pressure sensor that recorded each pulse as wheels compressed the tubing.  (For some of the old-timers, I reminded them of when gas stations used to use a similar system.)
    PteroDAQ worked well for this setup, running all day at 20 samples per second without a glitch.  The only problem was occasional display sleep from the laptop, fixable by touching the touch pad.
  • At the far right end of the table, I had a phototransistor which kids could shadow with their hands, with the result visible on another channel on PteroDAQ.  This was a last-minute change, as I was getting very unreliable results from the capacitive touch sensor when I tested it out last night.  The capacitive touch sensor worked fine at my house, but in the kindergarten room at Gateway I has a different electrical environment, and it would not work unless I grounded myself. Rather than fuss with the touch sensor, I made a new table sign and put in a light sensor instead.
    I might want to experiment this summer with different ways of making touch plates—trying to get one that doesn’t rely on the toucher being grounded.  My initial thought is that if I have two conductors that are not too close together, but which would both be close to a finger if the touch plate is touched, then I may be able to get more reliable sensing.  I could try some wire-and-tape prototypes and maybe make PC boards with different conductor layouts.  (OSH Park‘s pricing scheme would be good for such tiny boards).

I also had my laptop displaying my book; some quarter-page blurbs with URLs for my book, PteroDAQ, and this blog; my 20-LED strobe; my desk lamp; and a PanaVise displaying one of the amplifier prototyping boards.

I’d like to think of a more exciting project for kids to play with next year—perhaps something I could build over the summer.  Readers, any suggestions?

In addition to my display, some of the freshmen from my freshman design seminar class demonstrated their EMG-controlled robot arm (which uses the MeArm kit):

The students built a MeArm from a kit, then programmed a Teensy board to respond to muscle signals amplified by amplifiers designed by other students in the class. The combined project had two channels: one for controlling the forward-backward position of the arm (using the biceps), the other for controlling the gripper (using muscles in the forearm). With practice, people could pick up a light object with the robot arm.

The scheduling of the Mini Maker Faire was not ideal this year, as it conflicted with the Tech Challenge, Santa Cruz County Math contest, the California Invention Convention, and the Gem and Mineral Show, all of which draw from the same audience as the Mini Maker Faire.

The Faire seemed to be reasonably well attended (rather slow for the first hour and half, but picking up considerably in the afternoon).  There was plenty of room for more exhibitors, so I think that organizers need to do a bit more outreach to encourage people to apply.  It would probably help if they were quicker responding to applicants (it took them over three months to respond to my application, and then only after I nudged them).

Some obvious holes in the lineup: The Museum of Art and History did not have a display, but I saw Nina Simons there, and she said that MAH definitely plans to do it next year, but the Abbott Square renovation is taking up all their time this year.   The fashionTEENS fashion show was April 21, just over a week ago, so it would have been good to get some of them to show their fashions again: either on mannequins or as a mini-show on the stage.  It might be good to get some of Santa Cruz’s luthiers or fine woodworkers to show—we have a lot of top-notch ones, and many do show stuff at Open Studios. The only displays from UCSC were mine and the Formula Slug electric race car team.

Of the local fab labs, Cabrillo College Fab Lab and Idea Fab Labs were present, but The Fábrica and the Bike Church were not.  I thought that Cabrillo did a great job of exhibiting, but Idea Fab Labs was a little too static—only the sand table was interactive.

It might be good to have Zun Zun present their Basura Batucada show (entirely on instruments made from recycled materials) and have a booth on making such instruments.  It might be hard to get Zun Zun to volunteer, but they used to be very cheap to hire (I hired them to give a show at my son’s kindergarten class 15 years ago—they were very cheap then, but I don’t know what their prices are now).

One problem my wife noted was the lack of signs on the outside of classrooms, so that people would know what was inside.  The tiny signs that the Faire provided (I think—I didn’t get one) were too small to be of any use.  It may be enough to tell makers to bring a poster-sized sign to mount.  I had my cloth banner behind my table, but a lot of the displays were hard to identify.  Instructions or information mounted on tables would also have been good—again these would have to be provided by the makers.  I did not see people carrying maps this year—they can also be helpful in getting people to find things that were tucked away in odd corners.  Not many people made it back to the second kindergarten room where FabMo and the Lace Museum activities were.

Update 2017 May 1: It turns out that there were some things I missed at the Faire.  The principal of Gateway sent me email:

… we did have 4 of the Fashion Teens exhibit their creations on the stage at 11:30—might be cool to have them put those on mannequins and have a booth next year. Also we had two more UCSC projects—Jim Whitehead and the Generative Art Studio, and Project AWEsome from the School of Engineering. We would LOVE to have more UCSC-related projects …


2017 January 8

Applying for Mini Maker Faire 2017

Filed under: Uncategorized — gasstationwithoutpumps @ 17:41
Tags: , , , ,

I’m submitting an application for the Santa Cruz Mini Maker Faire 2017 (2017 April 29), since last year’s Mini-Maker Faire went well (see Santa Cruz Mini Maker Faire went well).  This year I’m getting my application in early, rather than dithering about it for months as I did last year.  I have less free time to prepare the display this year, but I have a better notion what I want to do, so it should not take long to get ready.

Last year's banner, which I can reuse this year. I might also make a shorter one that will fit on the front of the table.

Last year’s banner, which I can reuse this year. I might also make a shorter one that will fit on the front of the table.

The “non-public” description of my display is straightforward:

I’ll bring a tabletop full of electronics projects, as last year (see ).

Laptops demonstrating free software to turn cheap microprocessor boards into data-acquisition systems suitable for home labs and science-fair projects.
Homemade LED desk lamp and stroboscope.

Several of the projects will be interactive (an optical pulse-rate monitor, oscillators that can be adjusted to change Lissajous figures on an oscilloscope, …).

A few changes from last year: a more reliable pulse-monitor design and a new USB oscilloscope.

The public blurb is similar to last year’s:

See your pulse on a home-made optical pulse monitor!
Record air pressure waveforms using free PteroDAQ data acquisition software!
Play with a bright custom-design LED stroboscope!
Control fancy Lissajous patterns on an oscilloscope!

I removed mention of an EKG, because I decided that it was too much trouble to tether myself with EKG leads all day.

My “Maker bio” is a bit boring, :

Kevin Karplus has been an engineering faculty member at UCSC since 1986, but has done hobbyist electronics on-and-off since the 1960s. For the past few years he has been working on a low-cost textbook to make hands-on analog electronics accessible to a wider range of students.  Several of the projects on display are from the textbook.

2016 April 16

Santa Cruz Mini Maker Faire went well

The first Santa Cruz Mini Maker Faire seemed to go well.  I did not get to see much of it, since I was busy at my booth most of the day, though I did get a break for lunch while my assistant Henry manned the booth, and I made a quick tour of the exhibits during that break, to see what was there, though with no time to chat with other exhibitors.

I understand that about 1800 people bought tickets to the Mini Maker Faire, which probably means there were over 2000 people on-site, including volunteers and makers.  I hope the food vendors did OK—I ate at the Ate3One truck, since I never have before, but my opinion afterwards was that CruzNGourmet and Zameen have better food (both of those trucks are frequently on campus, and I’ve eat at each several times).

My day went pretty well, though I had one annoying problem, having to do with my pulse monitor display. When I set up the booth Friday evening, the pulse monitor was not working, and I thought that the phototransistor had somehow been broken in the rough ride in the bike trailer, so I brought the pulse monitor home, replaced the phototransistor and tested in thoroughly.  Everything worked great, so I packed it more carefully for transport in the morning.

When I got everything set up Saturday morning, I found I had no electricity, though the electricity had worked fine the night before.  After I finally tracked down a staff member with the authority to do anything about it, he suggested unplugging the other stuff plugged in and switching outlets.  I turned out that the only problem was that the outlets were so old and worn out that they no longer gripped plugs properly—taping the extension cord to the outlet box so that the weight of the cord didn’t pull out the plug fixed the power problem.

Once I had power, I tested the pulse monitor, and it failed again!  I used the oscilloscope to debug the problem, and found that the first stage transimpedance amplifier was saturating—there was too much light in the room, and even shading the pulse monitor didn’t help. By then, my assistant for the day (and my group tutor for the class on campus), Henry, had arrived and gotten the parking permit on his car, so I raced home on my bike to get resistors, capacitors, op amp chips, multimeters, hookup wire,and clip leads to try to rebuild the pulse monitor from scratch on the bread board.

When I got back to Gateway School, I tried a simple fix before rebuilding everything—I added a pair of clip leads to the board so that I could add a smaller resistor in parallel with the feedback resistor in the transimpedance amplifier, reducing the gain by a factor of about 30.  This reduced gain kept the first stage from saturating, and the pulse monitor worked fine.  Rather than rebuild the amplifier, I just left the pair of clip leads and the resistor in place all day—they caused no problem despite many people trying out the pulse monitor.

I think that I want to redesign the pulse monitor with a logarithmic first stage, so that it will be insensitive to ambient light over several decades of light.  That should be an easy fix, but I’ll have to test it to make sure it works. I don’t think I’ll have time this weekend or next to do that, but I’ll add it to my to-do list.

I’ll need to think about whether to include having a logarithmic response in the textbook—that is certainly more advanced than what I currently include (just a transimpedance amplifier), which is already pushing students a bit.  A transimpedance amplifier is a pretty common component in bioelectronics, so I really want to leave one in the course.  I’m not sure a logarithmic amplifier is important enough or simple enough to include at this level (I don’t currently cover the non-linearity of diodes).


Here is the booth display with my assistant, Henry. I was permitted to use painter's tape to attach the banner to the whiteboard.

Here is the booth display with my assistant, Henry. I was permitted to use painter’s tape to attach the banner to the whiteboard.

The magenta laptop on right (which my family refers to as the “Barbie laptop”) was a used Windows laptop that I bought for testing out PteroDAQ installation on Windows. It was set up with PteroDAQ running all day, recording a voltage from a pressure sensor and a frequency from a hysteresis oscillator (as a capacitance touch center).

Just to the left of that was a fairly bright stroboscope, using 20 of my constant-current LED boards. To its left is my laptop, displaying the current draft of my book. Behind (and above) the laptop is my desk lamp, which uses the same electronic hardware as the stroboscope, though with only 6 LED boards, not 20.

In front of the laptop is the pulse monitor, which includes a TFT display in an improvised foamcore stand. I used just a half block for the pulse sensor, relying on ambient light (sunlight and the desk lamp) for illuminating the finger.

To the left of the pulse monitor was a stack of business cards for my book and sheets of paper with my email address and URLs for this blog and the book.  I should have included the PteroDAQ URL as well, but I had forgotten to do so. I did tell a lot of people how to find PteroDAQ from the navigation bar of my blog, but putting it on the handout would have been better. Ah well, something to fix next year (if Gateway is crazy enough to do another Mini Maker Faire, which I hope they are).

I also had all my bare PC boards that I had designed and not populated, plus my two Hexmotor H-bridge boards, behind the business cards. One of the amplifier prototyping boards was displaying in the Panavise that I use for soldering.

On the far left of the table is my Kikusui oscilloscope and two function generators, set up to generate Lissajous figures.  I let kids play with the frequencies of the function generators, take their pulse with the pulse monitor, and play with the pressure sensor and the capacitive touch sensor.

My booth was not the most popular of the Faire by any means (certainly the R2 Makers Club in the next booth was more popular), but I was kept busy all day and I talked with a lot of people who seemed genuinely interested in what I was doing, both with the UCSC course and as a hobbyist.

2016 March 25

Accepted for Mini Maker Faire

Filed under: Uncategorized — gasstationwithoutpumps @ 00:02
Tags: , , , ,

My application for the Santa Cruz Mini Maker Faire (mentioned in Santa Cruz Mini Maker Faire 2016Applying for Mini Maker FaireApplying for Mini Maker Faire round 2, and Applying for Mini Maker Faire round 3), was accepted this week.  I’ll have a 30″×72″ table to display on.

I’ve ordered a yard of 56″-wide “Performance Piqué” fabric, which is costing me $33, because I’m paying an extra $12 for faster processing (having dithered so long about the design).  That is, I’ve changed the design again, to something less busy:



The 150dpi image that I sent to Spoonflower was 7.7MB as a PNG file, which is not too large.  I’m curious to see how bad the gradient looks when printed on fabric.

I’ll have to spend some time once my son has gone back to college setting up the table in his room as the display table, to see how much stuff I can reasonably put in the display.  Here is what I’m currently thinking of:

  • A pulse monitor with a 2.8″ TFT display driven by a Teensy 3.1 board and using the op-amp protoboard with a transimpedance amplifier on it to amplify the phototransistor signal.  I got that working this week (not written up yet for the blog), but I’m still playing with other ways of mounting the LED and phototransistor, since the two ways I’ve tried so far are both subject to severe motion artifacts.  I need a way to immobilize the LED and phototransistor, but still move it quickly from person to person.
  • An analog oscilloscope with a pair of function generators, to show Lissajous figures (kids can adjust the frequency and amplitude of one of the function generators).
  • PteroDAQ running on my laptop and a Teensy LC board, with EKG and pressure-sensor input.  I’ll have to wear the EKG electrodes, but the blood pressure cuff can be set up separately.  I’m a little worried about being tethered to the EKG, and about the blood pressure cuff readings being a bit too hard to read in the raw PteroDAQ output—I normally have to bandpass filter to get the fluctuations and low-pass filter to get the corresponding pressure.  I may want to think about other things I could show with PteroDAQ.
  • Bitscope and microphone preamplifier?
  • Desk lamp using LED boards
  • Strobe using LED boards  (which reminds me—I wanted to put together a program which could switch between dimmer and strobe functions with a single shorting jumper).
  • Tool display? (soldering iron, board holder, multimeter, flush cutters, …)
  • Business cards for my book (designed, but not ordered yet)
  • Handout with book and blog information (not designed yet—probably will be quarter-page to keep printing costs down)

If anyone has other ideas for stuff I should do, I still have a little time to put something together, but classes start next week and I’ll be putting in full time on the Applied Electronics course, so it can’t be anything complicated (unless I already have it soldered up on a board).  I’ve also dedicated both my Teensy boards (for the pulse monitor and PteroDAQ), so I’d have to do things with either an Arduino or the FRDM KL25Z board.


2016 February 27

Applying for Mini Maker Faire round 3

Filed under: Uncategorized — gasstationwithoutpumps @ 20:10
Tags: , , , ,

I’ just submitted my application for the Santa Cruz Mini Maker Faire, as mentioned in Santa Cruz Mini Maker Faire 2016Applying for Mini Maker Faire, and Applying for Mini Maker Faire round 2.

The banner will still be a yard of 56″-wide “Performance Piqué” fabric for about $18, but I’ve changed the design:



I’m still not happy with the design, but it is better than the previous one. I have time to work on it more before I have to order the banner, so I welcome suggestions. Should it be made simpler? busier? different colors? Should it include photos?  Are there other circuits I should include? Should I scale the circuits to have the same line widths? or make them have a wider variation in size? (Note: everything but the PteroDAQ logo is scalable graphics, so I can make things as big or small as I need to, and still get the 150dpi resolution needed for fabric printing.)

I’ve pretty much given up on writing an exciting one-paragraph blurb to go with the application and will go with something rather bland, just so I can get the application submitted.  Sometimes it is better to be done with a less perfect result than to keep fussing and miss a deadline.  Here is what I’ve submitted:

See your pulse on a home-made optical pulse monitor!
Record air pressure waveforms using Arduino or Teensy boards with free PteroDAQ data acquisition software!
Play with a bright LED stroboscope and desk lamp, made with custom-designed PC boards!
Use oscilloscope and function generators!
Watch demos of a home-made electrocardiogram (EKG)!

I did not submit a picture with the application, because I couldn’t think of a good one to submit—they wanted a URL for one that is on-line, which would probably mean something from this blog.  Ah, well, if they accept my application (which I assume they will), then I’ll be able to ask them what sort of picture they want and see if I can find something that is useful.

Next Page »

Blog at

%d bloggers like this: